思路分析:
- 首先检查特殊情况,如果输入整数n等于2,直接返回1,因为2不能再拆分为更小的正整数之和,所以最大乘积就是1。
- 创建一个数组dp,用于存储拆分整数n后得到的最大乘积,数组大小为n+1。
- 初始化dp数组的前两个元素为0和1,因为当n为2时最大乘积为1。
- 使用一个循环从3到n,依次计算拆分整数i后的最大乘积。
- 在内部循环中,遍历所有可能的拆分情况,j从1到i的一半。对于每个j,计算拆分为j和(i-j)后的乘积,然后取最大值,并将结果存储在dp[i]中。
- 最后返回dp[n],即整数n拆分后得到的最大乘积。
class Solution {
public:
int integerBreak(int n) {
// 如果输入为2,直接返回1,因为2不能再拆分为更小的正整数之和
if(n == 2)
return 1;
int i, j;
int dp[n+1]; // 创建一个数组dp,用于存储拆分整数n后得到的最大乘积
dp[0] = dp[1] = 0; // 初始化dp数组的前两个元素为0
dp[2] = 1; // 当n为2时,最大乘积为1
for(i = 3; i <= n; i++) {
dp[i] = 1; // 初始化dp数组的第i个元素为1
// 遍历所有可能的拆分情况,j从1到i/2
for(j = 1; j <= i/2; j++) {
// 计算拆分为j和(i-j)后的乘积,并取最大值
dp[i] = max(j * dp[i-j], dp[i]);
dp[i] = max(j * (i-j), dp[i]);
}
}
// 返回整数n拆分后得到的最大乘积
return dp[n];
}
};