力扣--动态规划343.整数拆分

文章介绍了如何利用动态规划方法解决整数n拆分成若干个正整数之和的问题,通过计算每个拆分情况的最大乘积来确定最终结果。
摘要由CSDN通过智能技术生成

思路分析:

  1. 首先检查特殊情况,如果输入整数n等于2,直接返回1,因为2不能再拆分为更小的正整数之和,所以最大乘积就是1。
  2. 创建一个数组dp,用于存储拆分整数n后得到的最大乘积,数组大小为n+1。
  3. 初始化dp数组的前两个元素为0和1,因为当n为2时最大乘积为1。
  4. 使用一个循环从3到n,依次计算拆分整数i后的最大乘积。
  5. 在内部循环中,遍历所有可能的拆分情况,j从1到i的一半。对于每个j,计算拆分为j和(i-j)后的乘积,然后取最大值,并将结果存储在dp[i]中。
  6. 最后返回dp[n],即整数n拆分后得到的最大乘积。
     
class Solution {
public:
    int integerBreak(int n) {
        // 如果输入为2,直接返回1,因为2不能再拆分为更小的正整数之和
        if(n == 2)
            return 1;
        
        int i, j;
        int dp[n+1];  // 创建一个数组dp,用于存储拆分整数n后得到的最大乘积
        
        dp[0] = dp[1] = 0;  // 初始化dp数组的前两个元素为0
        dp[2] = 1;  // 当n为2时,最大乘积为1
        
        for(i = 3; i <= n; i++) {
            dp[i] = 1;  // 初始化dp数组的第i个元素为1
            
            // 遍历所有可能的拆分情况,j从1到i/2
            for(j = 1; j <= i/2; j++) {
                // 计算拆分为j和(i-j)后的乘积,并取最大值
                dp[i] = max(j * dp[i-j], dp[i]);
                dp[i] = max(j * (i-j), dp[i]);
            }
        }
        
        // 返回整数n拆分后得到的最大乘积
        return dp[n];
    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值