合并两个有序数组

文章描述了一个编程问题,如何将两个已排序的整数数组nums1和nums2合并到nums1中,同时保持合并后数组的非递减顺序。给出了两种方法,一种是先合并再排序,另一种是合并时即进行排序,降低了时间复杂度。
摘要由CSDN通过智能技术生成

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。

请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。

注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

示例 1:

输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:

输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:

输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
 

提示:

nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-109 <= nums1[i], nums2[j] <= 109
 

进阶:你可以设计实现一个时间复杂度为 O(m + n) 的算法解决此问题吗?

一次通过,我把问题想复杂了(也可能是我的方法不太好,容易想但是费时间)

基本思路:都放到第一个数组后再进行排序

void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
    if(m==0&&n==1)
     nums1[0]=nums2[0];
     else
     {
       int k=0;
      for(int i=m;i<m+n;i++)
         {
          nums1[i]=nums2[k++];
         }
     }
     int temp;
     for(int i=0;i<m+n;i++)
     {
         for(int j=i+1;j<m+n;j++)
         {
             if(nums1[i]>nums1[j])
             {
                 temp=nums1[i];
                 nums1[i]=nums1[j];
                 nums1[j]=temp;
             }
         }
     }
}

后提交发现前面进行分类其实没有意义,因为在该算法下,其情况已被包含,无需单独拎出来

void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
       int k=0;
      for(int i=m;i<m+n;i++)
         {
          nums1[i]=nums2[k++];
         }
     int temp;
     for(int i=0;i<m+n;i++)
     {
         for(int j=i+1;j<m+n;j++)
         {
             if(nums1[i]>nums1[j])
             {
                 temp=nums1[i];
                 nums1[i]=nums1[j];
                 nums1[j]=temp;
             }
         }
     }

问题解决。

降低时间复杂度:在进行合并的时候就进行排序

void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n) {
    int p1 = 0, p2 = 0;
    int sorted[m + n];
    int cur;
    while (p1 < m || p2 < n) {
        if (p1 == m) {
            cur = nums2[p2++];
        } else if (p2 == n) {
            cur = nums1[p1++];
        } else if (nums1[p1] < nums2[p2]) {
            cur = nums1[p1++];
        } else {
            cur = nums2[p2++];
        }
        sorted[p1 + p2 - 1] = cur;
    }
    for (int i = 0; i != m + n; ++i) {
        nums1[i] = sorted[i];
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值