给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
提示:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-109 <= nums1[i], nums2[j] <= 109
进阶:你可以设计实现一个时间复杂度为 O(m + n) 的算法解决此问题吗?
一次通过,我把问题想复杂了(也可能是我的方法不太好,容易想但是费时间)
基本思路:都放到第一个数组后再进行排序
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
if(m==0&&n==1)
nums1[0]=nums2[0];
else
{
int k=0;
for(int i=m;i<m+n;i++)
{
nums1[i]=nums2[k++];
}
}
int temp;
for(int i=0;i<m+n;i++)
{
for(int j=i+1;j<m+n;j++)
{
if(nums1[i]>nums1[j])
{
temp=nums1[i];
nums1[i]=nums1[j];
nums1[j]=temp;
}
}
}
}
后提交发现前面进行分类其实没有意义,因为在该算法下,其情况已被包含,无需单独拎出来
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n)
{
int k=0;
for(int i=m;i<m+n;i++)
{
nums1[i]=nums2[k++];
}
int temp;
for(int i=0;i<m+n;i++)
{
for(int j=i+1;j<m+n;j++)
{
if(nums1[i]>nums1[j])
{
temp=nums1[i];
nums1[i]=nums1[j];
nums1[j]=temp;
}
}
}
问题解决。
降低时间复杂度:在进行合并的时候就进行排序
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n) {
int p1 = 0, p2 = 0;
int sorted[m + n];
int cur;
while (p1 < m || p2 < n) {
if (p1 == m) {
cur = nums2[p2++];
} else if (p2 == n) {
cur = nums1[p1++];
} else if (nums1[p1] < nums2[p2]) {
cur = nums1[p1++];
} else {
cur = nums2[p2++];
}
sorted[p1 + p2 - 1] = cur;
}
for (int i = 0; i != m + n; ++i) {
nums1[i] = sorted[i];
}
}