BFS解决多源最短路问题_01矩阵_C++
0. 多源最短路问题介绍
如图,红色是出发点,蓝色是终点。以前我们做的题中,出发点只有一个,所谓多源的意思就是,出发点有多个,求最短路径。
当然,这种题的解题思路就是,将所有的出发点,合在一起,变成一个超级源点,直接计算从这个超级源点出发,到目标点的最短距离即可。
1. 题目解析+算法分析
leetcode链接:https://leetcode.cn/problems/2bCMpM/description/
1. 题目解析
-
给定一个由 0 和 1 组成的矩阵
mat
,请输出一个大小相同的矩阵,其中每一个格子是mat
中对应位置元素到最近的 0 的距离。两个相邻元素间的距离为 1 。 -
示例 1:
输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]
- 示例 2:
输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]
2. 算法分析
- 我们可以将所有的0先入队列,这一步是形成超级源点的一步。然后开始bfs向外搜索。
2. 代码实现
1. 版本1:vis数组版
class Solution {
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
int m, n;
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& mat)
{
m = mat.size(), n = mat[0].size();
bool vis[m][n];
// 1. 将所有的源点0入队
queue<pair<int, int>> q;
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
if (mat[i][j] == 0)
{
q.push({i, j});
vis[i][j] = true;
}
else
{
vis[i][j] = false;
}
}
}
// 2. 开始搜索
int count = 0;
while (q.size())
{
count++;
int sz = q.size();
while (sz--)
{
auto [a, b] = q.front();
q.pop();
for (int i = 0; i < 4; i++)
{
int x = a + dx[i], y = b + dy[i];
if (x >= 0 && x < m && y >= 0 && y < n && mat[x][y] && !vis[x][y])
{
mat[x][y] = count;
q.push({x, y});
vis[x][y] = true;
}
}
}
}
return mat;
}
};
2. 版本2:dist数组版
- 版本1中,我们需要用一个
vis
数组,记录每个节点有没有被访问过,还要用一个变量sz
,来实现一层一层向外扩展的动作。并且需要一个变量count
记录步数。 - 上面这三个动作,都可以通过一个
dist
数组实现,它的实际意义是记录每个位置离源点的距离。dist
数组初始化为-1,表示该位置没有被访问过;dist
数组值不为-1,表示搜索过了,且当前的值为遍历层数。
class Solution {
int dx[4] = {0, 0, 1, -1};
int dy[4] = {1, -1, 0, 0};
int m, n;
public:
vector<vector<int>> updateMatrix(vector<vector<int>>& mat)
{
m = mat.size(), n = mat[0].size();
// dist[i][j] == -1 表示:没有被搜索过
// dist[i][j] != -1 表示:搜索过了,且值为最短路径
vector<vector<int>> dist(m, vector<int>(n, -1));
queue<pair<int, int>> q;
// 1. 将所有的源点加入到队列中
for (int i = 0; i < m; i++)
{
for (int j = 0; j < n; j++)
{
if (mat[i][j] == 0)
{
q.push({i, j});
dist[i][j] = 0;
}
}
}
// 2. 一层一层向外扩展
while(q.size())
{
auto [a, b] = q.front();
q.pop();
for (int i = 0; i < 4; i++)
{
int x = a + dx[i], y = b + dy[i];
if (x >= 0 && x < m && y >= 0 && y < n && dist[x][y] == -1)
{
q.push({x, y});
dist[x][y] = dist[a][b] + 1;
}
}
}
return dist;
}
};