F - SSttrriinngg in StringString
题目大意:
思路解析:
对于t字符串我们应该先找到第一个字符,满足有k个之后,当前在那个位置,又因为S这个数组是循环的,那么这个位置,就可以对应到s的一个位置上,第二个字符那么我们只能选择这个位置后的剩余字符,然后看还需要多少个完整的s字符串才能拼接成k个字符,那么这个k的范围为[1,1e17] 那么可以使用二分答案进行枚举。
代码实现:
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
static int inf = (int) 2e7;
public static void main(String[] args) throws IOException {
int t = 1;
while (t > 0) {
solve();
t--;
}
w.flush();
w.close();
br.close();
}
static int maxN = 100005;
public static void solve() {
long n = f.nextLong();
char[] s = (" " + f.next()).toCharArray();
char[] t = f.next().toCharArray();
Vector<Integer>[] b = new Vector[26];
int m = s.length - 1;
int[][] a = new int[m+1][26];
for (int i = 0; i < 26; i++) {
b[i] = new Vector<>();
}
for (int i = 1; i <= m; i++) {
for (int j = 0; j < 26; j++) a[i][j] = a[i - 1][j];
a[i][s[i] - 'a']++;
b[s[i] - 'a'].add(i);
}
long l = 0; long r = (long) 1e17 + 520; long res = 0;
while (l <= r){
long mid = (l + r) >> 1;
long k = 0;
int z = 0;
for (int i = 0; i < t.length && k <= n; i++) {
int c = a[m][t[i] - 'a'];
if (c == 0){
k = n+1;
break;
}
long x = mid + a[z][t[i] - 'a'];
k += x / c;
x %= c;
z = b[t[i]-'a'].get((int) x);
}
if (k >= n) {
r = mid - 1;
}else {
res = mid + 1;
l = mid + 1;
}
}
w.println(res);
}
static PrintWriter w = new PrintWriter(new OutputStreamWriter(System.out));
static Input f = new Input(System.in);
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
static class Input {
public BufferedReader reader;
public StringTokenizer tokenizer;
public Input(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public String nextLine() {
String str = null;
try {
str = reader.readLine();
} catch (IOException e) {
// TODO 自动生成的 catch 块
e.printStackTrace();
}
return str;
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
public Double nextDouble() {
return Double.parseDouble(next());
}
public BigInteger nextBigInteger() {
return new BigInteger(next());
}
}
}