Codeforces Global Round 25 ---- F. Inversion Composition ---- 题解

F. Inversion Composition:

题目描述:

思路解析:

有一个初始排列 p,然后现在让我们给出一个q排列数组,并通过p数组和q数组得到qp数组,问是否能得到某组q和qp数组使他们的逆序对数量之和为k。

假设p有一对 (i,j) 为 (pi,pj) -> (2,3), 如果q2 < q3, 那么提供的答案贡献为0,否则会提供2的答案贡献。 假设p有一对 (i,j) 为 (pi,pj) -> (3,2) , 如果p2 > p3,那么提供的答案贡献为1,否则还是提供1的答案贡献。 从这里可以分析出,p的逆序对数量应该和k奇偶性相同。

那么这样,我们就可以知道qp数组我们需要多少对逆序队了,利用这个来求得qp数组,再反解q数组,并且要保证p数组的逆序对要出现在qp中。

代码实现:

 
import java.io.*;
import java.math.BigInteger;
import java.util.*;
 
 
public class Main {
    static int inf = (int) 1e9;
 
    static int[] t = new int[300005];
    public static void main(String[] args) throws IOException {
 
        int T = f.nextInt();
        while (T > 0) {
            solve();
            T--;
            for (int i = 1; i <= n; i++) {
                t[i] = 0;
            }
        }
        w.flush();
        w.close();
        br.close();
    }
 
 
 
    static int n;
    public static void solve() {
        n = f.nextInt();
        long k = f.nextLong();
        int[] a = new int[n];
        long m = 0;
        int[] cnt = new int[n];
        int[] ip = new int[n];
        for (int i = 0; i < n; i++) {
            a[i] = f.nextInt() - 1;
            ip[a[i]] = i;
            cnt[i] = sum(a[i]);
            m += i - cnt[i];
            upd(a[i] + 1, 1);
        }
 
        if (m > k || k > (long) (n-1) * n - m || (k - m) % 2 == 1){
            w.println("NO");
            return;
        }
        k = (k - m) / 2;
        int[] qp = new int[n+1];
        for (int i = 0; i < n; i++) {
            if (k > cnt[i]){
                k-=cnt[i];
            }else {
                for (int j = 0, v = i; j < i; j++) {
                    qp[j] = v--;
                    if (a[j] < a[i] && --k == 0){
                        qp[i] = v--;
                    }
                }
                for (int j = i+1; j < n; j++) {
                    qp[j] = j;
                }
                break;
            }
        }
        w.println("YES");
        for (int i = 0;i < n; i++) {
            w.print(qp[ip[i]] + 1 + " ");
        }
        w.println();
 
    }
    static int lowbit(int x) {return x & -x;}
    static void upd(int x, int val){
        for (int i = x; i <= n; i+=lowbit(i)) {
            t[i] += val;
        }
    }
 
    static int sum(int x){
        int res = 0;
        for (int i = x; i >= 1; i-=lowbit(i)) {
            res += t[i];
        }
        return res;
    }
 
 
    static PrintWriter w = new PrintWriter(new OutputStreamWriter(System.out));
    static Input f = new Input(System.in);
    static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 
    static class Input {
        public BufferedReader reader;
        public StringTokenizer tokenizer;
 
        public Input(InputStream stream) {
            reader = new BufferedReader(new InputStreamReader(stream), 32768);
            tokenizer = null;
        }
 
        public String next() {
            while (tokenizer == null || !tokenizer.hasMoreTokens()) {
                try {
                    tokenizer = new StringTokenizer(reader.readLine());
                } catch (IOException e) {
                    throw new RuntimeException(e);
                }
            }
            return tokenizer.nextToken();
        }
 
 
        public int nextInt() {
            return Integer.parseInt(next());
        }
 
        public long nextLong() {
            return Long.parseLong(next());
        }
 
        public Double nextDouble() {
            return Double.parseDouble(next());
        }
 
        public BigInteger nextBigInteger() {
            return new BigInteger(next());
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Studying~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值