目录
DP+贪心
思路:
定义f(i,j)表示从左上角走到坐标(i,j)处能获得的最大奖励。搜索所有从左上角走到右下角的路径,找到最优路径。f(i,j)分三种情况:第一列:f(i, 0) = f(i-1, 0) + board(i, 0)如果处在第一列,那么由于是第一列,所以从起点走,它只可能是向下不断走的到的第一行:f(0,j) = f(0, j - 1) + b(0, j)如果处在第一行,那么由于是第一行,所以从起点走,它只可能是向右不断走得到的其它位置:f(i, j) = max{f(i-1, j), f(i, j - 1)} + board(i, j)最后返回右下角的值
class Bonus {
public:
int getMost(vector<vector<int> > board) {
int x=board.size();
int y=board[0].size();
//vector<vector<int>> tot(x,vector<int>(y,0));
int tot[6][6]={0};
tot[0][0]=board[0][0];
for(int i=0;i<x;i++)
{
for(int j=0;j<y;j++)
{
if(i==0&&j==0) continue;
else if(i==0)
tot[i][j]=tot[i][j-1]+board[i][j];
else if(j==0)
tot[i][j]=tot[i-1][j]+board[i][j];
else
tot[i][j]=max(tot[i-1][j],tot[i][j-1])+board[i][j];
}
}
return tot[x-1][y-1];
}
};
dfs迷宫问题(最短路径)
思路:
本题可用回溯法求解 具体步骤为:
1.
首先将当前点加入路径,并设置为已走
2.
判断当前点是否为出口,是则输出路径,保存结果;跳转到
4
3.
依次判断当前点的上、下、左、右四个点是否可走,如果可走则递归走该点
4.
当前点推出路径,设置为可走
#include<iostream>
#include<vector>
using namespace std;
int ROW, COL;
vector<vector<int>> maze;
vector<vector<int>> path_tmp; //临时路劲
vector<vector<int>> path_best; //最佳路劲
void MazeTrack(int i, int j) {
maze[i][j] = 1; //代表(i,j)已经走过
path_tmp.push_back({i, j});
//判断是否到达出口
if (i == ROW - 1 && j == COL - 1) {
//寻找最短路劲
if (path_best.empty() || path_best.size() > path_tmp.size())
path_best = path_tmp;
}
//向右走
if (j + 1 < COL && maze[i][j + 1] == 0)
MazeTrack(i, j + 1);
//向左走
if (j - 1 >= 0 && maze[i][j - 1] == 0)
MazeTrack(i, j - 1);
//向上走
if (i - 1 >= 0 && maze[i - 1][j] == 0)
MazeTrack(i - 1, j);
//向下走
if (i + 1 < ROW && maze[i + 1][j] == 0)
MazeTrack(i + 1, j);
maze[i][j] = 0; //走不通,回溯 恢复路径
path_tmp.pop_back();
}
int main() {
cin >> ROW >> COL;
maze = vector<vector<int>>(ROW, vector<int>(COL, 0)); //开辟迷宫空间
//首先输入迷宫
for (int i = 0; i < ROW; ++i) {
for (int j = 0; j < COL; ++j)
cin >> maze[i][j];
}
MazeTrack(0, 0); //从起始点(0,0)开始走
//输出路径
for (int i = 0; i < path_best.size(); ++i) {
cout << "(" << path_best[i][0] << "," << path_best[i][1] << ")" << endl;
}
return 0;
}
用pair对组优化
#include<bits/stdc++.h>
using namespace std;
int dirs[4][2] = {-1, 0, 1, 0, 0, -1, 0, 1};
int n, m, grid[10][10];
vector<pair<int, int>> bestPath, path;
void dfs(int x, int y) {
grid[x][y] = 1;
path.emplace_back(x, y);
if (x == n - 1 && y == m - 1) // 到达终点
if (bestPath.empty() || path.size() < bestPath.size()) {
bestPath = path;
return;
}
for (auto &[dx, dy] : dirs) {
int nx = x + dx, ny = y + dy;
if (nx < 0 || nx >= n || ny < 0 || ny >= m || grid[nx][ny]) continue;
dfs(nx, ny);
}
path.pop_back(); // 还原状态
grid[x][y] = 0;
}
int main() {
cin >> n >> m;
for (int i = 0; i < n; ++i)
for (int j = 0; j < m; ++j)
cin >> grid[i][j];
dfs(0, 0);
for (auto &[x, y] : bestPath) {
printf("(%d,%d)\n", x, y);
}
return 0;
}