第一部分:需求分析

第二部分:python代码实现
import matplotlib.pyplot as plt
from pylab import mpl
# 设置中文显示字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = False
# 定义类别和对应的权重数据
categories = ['偿债能力A', '盈利能力B', '营运能力C', '发展能力D', '科创能力E']
weights = [0.130149334, 0.166992615, 0.257426011, 0.380037254, 0.065394786]
# 创建水平条形图,调整height参数来控制柱子的高度
plt.figure(figsize=(10, 6))
plt.barh(categories, weights, color='blue', height=0.3, label="一级指标权重") # 将 height 调整为 0.3,使柱子变细
plt.xlabel("Percentage (%)")
plt.title("各能力指标的权重分布")
# 在每个条形上添加数值标签
for index, value in enumerate(weights):
plt.text(value, index, f"{100*value:.3f}%", va='center', color='black')
# 设置x轴范围,可以根据数据范围调整
plt.xlim(0, 0.4)
# 添加竖直方向的浅色网格线
plt.grid(axis='x', color='lightgray', linestyle='--', linewidth=0.5)
# 反转Y轴顺序,使得最重要的指标在最上方
plt.gca().invert_yaxis()
# 显示图例
plt.legend()
plt.show()