deepseek绘制专业复杂数据图(可视化数据展示)

第一部分:使用deepseek生成html代码格式

帮我生成一个2025年环境治理的数据的html可视化数据图展示:

结果为:

<!DOCTYPE html>
<html lang="zh-CN">
<head>
    <meta charset="UTF-8">
    <title>2025年环境治理数据看板</title>
    <script src="https://cdn.jsdelivr.net/npm/echarts@5.4.2/dist/echarts.min.js"></script>
    <style>
        body { font-family: "Microsoft YaHei", sans-serif; margin: 20px; }
        .dashboard { max-width: 1200px; margin: 0 auto; }
        .chart-box { 
            height: 400px; 
            margin: 20px 0; 
            box-shadow: 0 2px 12px rgba(0,0,0,0.1);
            border-radius: 8px;
            padding: 20px;
        }
        .tabs { margin-bottom: 20px; }
        .tab { 
            display: inline-block; 
            padding: 10px 20px; 
            cursor: pointer; 
            border-radius: 4px;
            margin-right: 5px;
        }
        .active { background: #409EFF; color: white; }
    </style>
</head>
<body>
    <div class="dashboard">
        <h1>2025年环境治理数据看板</h1>
        
        <div class="tabs">
            <div class="tab active" οnclick="switchTab(0)">空气质量</div>
            <div class="tab" οnclick="switchTab(1)">水质监测</div>
            <div class="tab" οnclick="switchTab(2)">垃圾分类</div>
        </div>

        <div id="chart1" class="chart-box"></div>
        <div id="chart2" class="chart-box"></div>
    </div>

    <script>
        // 模拟数据
        const envData = {
            cities: ['北京', '上海', '广州', '成都', '西安'],
            airQuality: {
                pm25: [28, 25, 30, 32, 35],
                goodDays: [345, 355, 338, 325, 315]
            },
            waterQuality: {
                grade: ['Ⅱ类', 'Ⅲ类', 'Ⅱ类', 'Ⅲ类', 'Ⅳ类'],
                cleanRate: [98, 95, 96, 92, 88]
            },
            waste: {
                categories: ['可回收', '厨余', '有害', '其他'],
                values: [45, 30, 5, 20]
            }
        };

        // 图表配置
        const chartConfigs = [
            { // 空气质量
                title: '空气质量指数 (PM2.5年均值)',
                type: 'bar',
                data: envData.airQuality.pm25,
                yName: 'μg/m³',
                color: '#5470C6'
            },
            { // 水质监测
                title: '饮用水源达标率',
                type: 'line',
                data: envData.waterQuality.cleanRate,
                yName: '达标率 (%)',
                color: '#91CC75'
            },
            { // 垃圾分类
                title: '生活垃圾处理比例',
                type: 'pie',
                data: envData.waste.values,
                labels: envData.waste.categories
            }
        ];

        // 初始化图表
        const chart1 = echarts.init(document.getElementById('chart1'));
        const chart2 = echarts.init(document.getElementById('chart2'));

        function renderCharts(tabIndex) {
            const config = chartConfigs[tabIndex];
            
            // 主图表配置
            chart1.setOption({
                title: { text: config.title, left: 'center' },
                tooltip: {},
                xAxis: { 
                    data: config.labels || envData.cities,
                    axisLabel: { rotate: 45 }
                },
                yAxis: { name: config.yName },
                series: [{
                    type: config.type,
                    data: config.data,
                    itemStyle: { color: config.color },
                    areaStyle: config.type === 'line' ? {} : null
                }]
            });

            // 副图表(饼图特殊处理)
            if(tabIndex === 2) {
                chart2.setOption({
                    title: { text: '垃圾分类组成', left: 'center' },
                    tooltip: { trigger: 'item' },
                    series: [{
                        type: 'pie',
                        radius: '55%',
                        data: config.data.map((v, i) => ({
                            value: v,
                            name: config.labels[i]
                        })),
                        emphasis: { itemStyle: { shadowBlur: 10 } }
                    }]
                });
            } else {
                chart2.setOption({
                    title: { text: '年度优良天数统计', left: 'center' },
                    xAxis: { data: envData.cities },
                    yAxis: { name: '天数' },
                    series: [{
                        type: 'bar',
                        data: envData.airQuality.goodDays,
                        itemStyle: { color: '#FAC858' }
                    }]
                });
            }
        }

        // 切换标签页
        function switchTab(index) {
            document.querySelectorAll('.tab').forEach((t, i) => 
                t.classList.toggle('active', i === index));
            renderCharts(index);
        }

        // 初始化显示第一个标签页
        renderCharts(0);
    </script>
</body>
</html>

第二部分:记事本修改后缀

将上述内容粘贴到记事本中:然后更改后缀为html格式:

结果为:

双击打开:

感觉ai有点东西啊!

### DeepSeek 平台的数据可视化功能 DeepSeek平台支持丰富的数据可视化组件,这些组件能够帮助用户更直观地理解和分析复杂数据集。通过多功能可扩展组件(Component),可以创建各种类型的图表和仪表板来展示数据趋势、模式以及异常情况[^1]。 #### 创建柱状图示例 为了更好地理解如何利用DeepSeek实现具体的数据可视化效果,下面提供了一个简单的Python代码片段用于生成柱状图: ```python import matplotlib.pyplot as plt def create_bar_chart(data, labels): fig = plt.figure() ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # 设置X轴标签旋转角度以便阅读较长文字 ax.set_xticklabels(labels, rotation=45) # 绘制柱状图 ax.bar(range(len(data)), data) return fig data_points = [23, 45, 56, 78, 99] categories = ['Category A', 'Category B', 'Category C', 'Category D', 'Category E'] chart = create_bar_chart(data_points, categories) plt.show() ``` 此段脚本展示了怎样借助matplotlib库,在DeepSeek环境中快速构建一个基础版的柱形统计图。当然实际应用中还可以进一步优化样式设置并集成更多交互特性以满足不同业务需求。 除了上述提到的基础图形外,DeepSeek还允许开发者根据项目特点灵活选用其他高级视觉化形式如热力图(Heatmap)、桑基图(Sankey Diagrams)等,并且可以通过自定义面板(Panel)的方式将多个视图组合在一起形成综合性更强的信息看板。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值