DeepSeek数据可视化:让数据会说话

大家好,我是武哥。今天我要和大家分享如何使用DeepSeek来实现智能化的数据可视化。在大模型时代,数据可视化不再是简单的图表绘制,而是需要AI来理解数据含义,自动选择最适合的可视化方式,并生成洞察。通过本文的学习,你将掌握如何让DeepSeek帮助我们实现更智能的数据可视化。

1. 智能可视化选择器

首先,我们需要一个能够理解数据特征并智能选择可视化方式的组件:

class VisualizationSelector:
    def __init__(self):
        self.visualization_types = {
            'numerical_distribution': ['histogram''box_plot''violin_plot'],
            'time_series': ['line_plot''area_plot'],
            'correlation': ['scatter_plot''heatmap'],
            'composition': ['pie_chart''stacked_bar'],
            'comparison': ['bar_chart''radar_chart']
        }
        
    def analyze_data(self, df):
        """分析数据特征"""
        data_features = {
            'numerical_cols': df.select_dtypes(include=['int64''float64']).columns.tolist(),
            'categorical_cols': df.select_dtypes(include=['object']).columns.tolist(),
            'datetime_cols': df.select_dtypes(include=['datetime64']).columns.tolist(),
            'n_rows': len(df),
            'n_unique_values': {col: df[col].nunique() for col in df.columns}
        }
        return data_features
        
    def suggest_visualization(self, data_features):
        """推荐可视化方式"""
        prompt = f"""
        基于以下数据特征推荐最适合的可视化方式:
        
        数值型列: {data_features['numerical_cols']}
        类别型列: 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值