大家好,我是武哥。今天我要和大家分享如何使用DeepSeek来实现智能化的数据可视化。在大模型时代,数据可视化不再是简单的图表绘制,而是需要AI来理解数据含义,自动选择最适合的可视化方式,并生成洞察。通过本文的学习,你将掌握如何让DeepSeek帮助我们实现更智能的数据可视化。
1. 智能可视化选择器
首先,我们需要一个能够理解数据特征并智能选择可视化方式的组件:
class VisualizationSelector:
def __init__(self):
self.visualization_types = {
'numerical_distribution': ['histogram', 'box_plot', 'violin_plot'],
'time_series': ['line_plot', 'area_plot'],
'correlation': ['scatter_plot', 'heatmap'],
'composition': ['pie_chart', 'stacked_bar'],
'comparison': ['bar_chart', 'radar_chart']
}
def analyze_data(self, df):
"""分析数据特征"""
data_features = {
'numerical_cols': df.select_dtypes(include=['int64', 'float64']).columns.tolist(),
'categorical_cols': df.select_dtypes(include=['object']).columns.tolist(),
'datetime_cols': df.select_dtypes(include=['datetime64']).columns.tolist(),
'n_rows': len(df),
'n_unique_values': {col: df[col].nunique() for col in df.columns}
}
return data_features
def suggest_visualization(self, data_features):
"""推荐可视化方式"""
prompt = f"""
基于以下数据特征推荐最适合的可视化方式:
数值型列: {data_features['numerical_cols']}
类别型列: