Lorry
大意
现在告诉你有n个物品,背包的体积为V。
然后n行,每行两个数据 ti 和 pi 有两种类型的物品,如果是1类型的物品,那么它的体积为1,如果是2类型的物品,那么它的体积为2。并同时告诉了我们
每种物品的价值。
问你在不超过背包的容量的情况下,所能获得的背包的最大价值。并同时输出被选在背包中的物品的序号。
数据范围
1 ≤ n ≤ 105; 1 ≤ v ≤ 109
ti = (1, 2), pi ≤ 104
思路
因为V十分大,所以肯定不能是01背包。于是可以对每种物品的价值排序,然后优先选择价值高的。
然后有一个点我没考虑到,如果这样优先选择价值高的话,背包的体积可能会有所空出来,但是可以得之背包中空出来的体积肯定是1。
于是就分了两种情况:
1)在后面的物品中选择体积为1的加进去
2)在前面的物品中选择体积为1的删除,并在后面选择体积为2的加入到我们所选的集合中。
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 100010;
int vis[N], num[N];
struct node {
int t, p;
double val;
int id, v;
} a[N];
bool cmp (node x, node y) {
return x.val > y.val;
}
int n, V;
signed main () {
cin >> n >> V;
for (int i = 1; i <= n; i++) {
cin >> a[i].t >> a[i].p;
if (a[i].t == 1) a[i].val = a[i].p / 1.0, a[i].v = 1;
else a[i].val = a[i].p / 2.0, a[i].v = 2;
a[i].id = i;
}
sort (a + 1, a + 1 + n, cmp);
int res = 0, ans = 0, xx = -1;
for (int i = 1; i <= n; i++) {
if (res + a[i].v <= V) {
res += a[i].v;
ans += a[i].p;
vis[i] = 1;
} else {
xx = i;
break;
}
}
//printf("%d\n",ans);
if (V - res > 0 && xx != -1) { //注意有一种特殊情况,当没有一种物品可以被选进去的时候,也要判断过此时的情况,即为xx!=-1
int ans1 = ans, a1 = 0;
for (int i = xx; i <= n; i++) {
if (a[i].t == 1) {
ans1 = ans + a[i].p;
a1 = i;
break;
}
}
int del = 0, ans2 = 0, a2 = 0;
for (int i = xx - 1; i >= 1; i--) {
if (a[i].t == 1) {
del = i;
ans2 = ans - a[i].p;
bool F = false;
for (int j = i + 1; j <= n; j++) {
if (a[j].t == 2 && !vis[j]) {
ans2 += a[j].p;
a2 = j;
F = true;
break;
}
}
if (F) break;
}
}
if (ans1 >= ans2 && ans1 > ans) {
ans = ans1;
vis[a1] = 1;
} else if (ans2 >= ans1 && ans2 > ans) {
ans = ans2;
vis[del] = 0;
vis[a2] = 1;
}
}
cout << ans << endl;
int t = 0;
for (int i = 1; i <= n; i++) {
if (vis[i]) {
num[t++] = a[i].id;
}
}
for (int i = 0; i < t; i++)
cout << num[i] << " ";
cout << endl;
}