机器学习/数据分析案例---糖尿病预测

前言

  • 这是一篇数据分析/机器学习很好的入门案例,对糖尿病的影响进行预测和分析
  • 通过随机森林预测,平均准确率和召回率都不错
  • 不足:没有对特性进行特征提取,算法没有运用多个

1、导入数据

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 

data = pd.read_excel('dia.xls')
data
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
0180544210381.252.991.070.645.31838304.99243.35010
1180544220311.151.990.840.503.98856304.72391.04710
2180544230271.292.210.690.604.19736105.87325.75110
3180544240330.932.010.660.843.60836002.40203.24020
4180544250361.172.830.830.734.83856704.09236.84300
...................................................
1001202611821861.583.811.111.676.50927308.60406.29311
1002202611920671.484.561.312.597.35768604.00262.55931
1003202612011671.302.900.841.615.041037504.70393.69831
1004202612130461.212.310.671.344.19788403.80219.25121
1005202612370361.122.801.153.595.0710211305.70462.46711

1006 rows × 16 columns

2、数据预处理

# 查看数据信息
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1006 entries, 0 to 1005
Data columns (total 16 columns):
 #   Column      Non-Null Count  Dtype  
---  ------      --------------  -----  
 0   卡号          1006 non-null   int64  
 1   性别          1006 non-null   int64  
 2   年龄          1006 non-null   int64  
 3   高密度脂蛋白胆固醇   1006 non-null   float64
 4   低密度脂蛋白胆固醇   1006 non-null   float64
 5   极低密度脂蛋白胆固醇  1006 non-null   float64
 6   甘油三酯        1006 non-null   float64
 7   总胆固醇        1006 non-null   float64
 8   脉搏          1006 non-null   int64  
 9   舒张压         1006 non-null   int64  
 10  高血压史        1006 non-null   int64  
 11  尿素氮         1006 non-null   float64
 12  尿酸          1006 non-null   float64
 13  肌酐          1006 non-null   int64  
 14  体重检查结果      1006 non-null   int64  
 15  是否糖尿病       1006 non-null   int64  
dtypes: float64(7), int64(9)
memory usage: 125.9 KB
# 查看缺失值
data.isnull().sum()
卡号            0
性别            0
年龄            0
高密度脂蛋白胆固醇     0
低密度脂蛋白胆固醇     0
极低密度脂蛋白胆固醇    0
甘油三酯          0
总胆固醇          0
脉搏            0
舒张压           0
高血压史          0
尿素氮           0
尿酸            0
肌酐            0
体重检查结果        0
是否糖尿病         0
dtype: int64

绘制纸箱图

# 通过绘制箱型图,判断是否存在异常值
import seaborn as sns 
#设置字体
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]  # 显示中文
plt.rcParams['axes.unicode_minus'] = False		# 显示负号

feature_name = {
    '性别': '性别',
    '年龄': '年龄',
    '高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇',
    '低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇',
    '极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇',
    '甘油三酯': '甘油三酯',
    '总胆固醇': '总胆固醇',
    '脉搏': '脉搏',
    '舒张压': '舒张压',
    '高血压史': '高血压史',
    '尿素氮': '尿素氮',
    '肌酐': '肌酐',
    '体重检查结果': '体重检查结果',
    '是否糖尿病': '是否糖尿病'
}

plt.figure(figsize=(20, 20))

for i, (col, col_name) in enumerate(feature_name.items(), 1):
    plt.subplot(4, 4, i)
    sns.boxplot(y=data[col])
    plt.title(f'{col_name}的纸箱图', fontsize=14)
    plt.ylabel('数值', fontsize=12)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    
plt.tight_layout()
plt.show()

在这里插入图片描述

参考值(正常)

  • 高密度脂蛋白胆固醇:0.83-1.96 mmol/L
  • 总胆固醇(TC)或(CHOL)参考范围:3~5.2 mmol/L
  • 甘油三酯(TG) 参考范围:0~1.7 mmol/L
  • 低密度脂蛋白(LDL-C)参考范围:0~3.12 mmol/L

分析(查阅一点资料决定的)

  • 低密度脂蛋白胆固醇,高于8的去除
  • 极低密度脂蛋白胆固醇,高于8的去除
  • 甘油三酯,高于40去除
  • 总胆固醇,高于12的删除
  • 肌酐,800(>790)的删除
  • 尿素氮,>15删除

写代码运行发现
发现全部删去了,这里假设以上情况均属于偶然,均存在,因为生病情况受到影响因素很复杂

分析

  • 影响特征的大量数均分布在中位数附件,比较平均于对称

3、数据分析

# 统计分析
data.describe()
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
count1.006000e+031006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.0000001006.000000
mean1.838279e+070.59841050.2882701.1522012.7074750.9983111.8967204.85762480.81908576.8866800.1739565.562684339.34542764.1063621.6093440.444334
std6.745088e+050.49046416.9214870.3134260.8480700.7158912.4214031.02997312.54227012.7631730.3792601.64634284.56984629.3384370.7723270.497139
min1.805442e+070.00000020.0000000.4200000.8400000.1400000.3500002.41000041.00000045.0000000.0000002.210000140.80000030.0000000.0000000.000000
25%1.807007e+070.00000037.2500000.9200002.1000000.6800000.8800004.20000072.00000067.0000000.0000004.450000280.85000051.2500001.0000000.000000
50%1.807036e+071.00000050.0000001.1200002.6800000.8500001.3350004.78500079.00000076.0000000.0000005.340000333.00000062.0000002.0000000.000000
75%1.809726e+071.00000060.0000001.3200003.2200001.0900002.0875005.38000088.00000085.0000000.0000006.367500394.00000072.0000002.0000001.000000
max2.026124e+071.00000093.0000002.5000007.98000011.26000045.84000012.610000135.000000119.0000001.00000018.640000679.000000799.0000003.0000001.000000

主要是老年人居多

相关性分析

注意:seaborn绘制热力图的时候,版本需要与matplotlib版本配对,matplotlib版本需要在3.8.0以下

# 相关性分析
import seaborn as sns 

data.drop(columns=['卡号'], inplace=True)

plt.figure(figsize=(20, 15))   
sns.heatmap(data.corr(),annot=True)

plt.show()


在这里插入图片描述

除了高密度脂蛋白胆固醇外,其他均成正相关

5、模型创建

1、数据集划分

from sklearn.model_selection import train_test_split
# 划分特征值和目标值
X = data.drop(['是否糖尿病', '高密度脂蛋白胆固醇'], axis=1)  # 高密度脂蛋白胆固醇: 与目标值负相关
y = data['是否糖尿病']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2、模型的创建

from sklearn.tree import DecisionTreeClassifier

# 创建模型与训练
model = DecisionTreeClassifier()
model.fit(X_train, y_train)

模型预测

y_pred = model.predict(X_test)

6、模型评估

from sklearn.metrics import classification_report

reporter = classification_report(y_test, y_pred)
print(reporter)
              precision    recall  f1-score   support

           0       0.81      0.78      0.80       120
           1       0.70      0.73      0.71        82

    accuracy                           0.76       202
   macro avg       0.75      0.76      0.76       202
weighted avg       0.76      0.76      0.76       202

准确率、召回率、f1得分很高,模型效果极好

7、特征重要性展示

feature_importances = model.feature_importances_
features_rf = pd.DataFrame({'特征': X.columns, '重要度': feature_importances})
features_rf.sort_values(by='重要度', ascending=False, inplace=True)
plt.figure(figsize=(6, 5))
sns.barplot(x='重要度', y='特征', data=features_rf)
plt.xlabel('重要度')
plt.ylabel('特征')
plt.title('随机森林特征图')
plt.show()


在这里插入图片描述

8、总结

  1. 环境:seaborn绘制热力图的时候,版本需要与matplotlib版本配对,matplotlib版本需要在3.8.0以下
  2. 随机森林:可以决解多重共线性问题
  3. 进一步熟悉了数据分析的过程
  4. 不足:算法的扩展性、数据特征提取没有做
课程介绍 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 人工智能已经来了,它就在我们身边几乎无处不。技术正彻底改变类 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 的认知,重建人机相互协作关系。前所未有自动驾驶正在构我们头脑中出行地图和 人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆人类生活图景,今天的 工智能技术也正在翻译、写作绘画等文和艺领域进行大胆尝试。 我们真的知道什么是人工智能吗 我们真的知道什么是人工智能吗 我们真的知道什么是人工智能吗 我们真的知道什么是人工智能吗 ? 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 我们真的准备好与人工智能共同发展了吗 ? 我们该如何在心理上将人和机器摆正确的位置 我们该如何在心理上将人和机器摆正确的位置 我们该如何在心理上将人和机器摆正确的位置 我们该如何在心理上将人和机器摆正确的位置 我们该如何在心理上将人和机器摆正确的位置 ? 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 我们该如何规划人工智能时代的未来生活…… 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 当人工智能时代成为必然,个应该做些什么才避免被 AI 取代?企业应该如 取代?企业应该如 何升 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 级,才能在新的商业变局到来前抓住先机? 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 我们无需担忧和惧怕人工智能时代的到来,所要做应当是尽早认清 AI 与人类 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 的关系,了解变革规律更好地拥抱新时代到来。 通过本课程 拓展一下思维,期待收获 拓展一下思维,期待收获 拓展一下思维,期待收获 拓展一下思维,期待收获 能多一些 。包含:机器 包含:机器 包含:机器 学习 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 、深度学习通信感知与行动等人工智能在 各领域的应用知识。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值