今天正式进入动态规划。首先了解了动态规划的基本问题与动规五步曲:1.明确DP数组与下标含义;2.给出递推公式;3.初始化DP数组;4.明确遍历顺序;5.打印DP数组。
第一题是斐波那契数https://leetcode.cn/problems/fibonacci-number/submissions/503671190/,根据以上五步曲,由于本题中递推公式与初始化题目均已给出,所以本题没有需要额外思考内容。
class Solution {
public:
int fib(int n) {
if (n <= 1) return n;
vector<int> dp(n + 1);
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++){
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n - 1];
}
};
递归代码如下:
class Solution {
public:
int fib(int n) {
if (n < 2) return n;
return fib(n - 1) + fib(n - 2);
}
};
第二题是爬楼梯https://leetcode.cn/problems/climbing-stairs/description/,根据动态规划五步曲,首先确定dp[i]即为到达第i阶的方法数量,由于每次只能上一或二个台阶,所以dp[i]只与dp[i-1],dp[i-2]有关,dp[i] = dp[i-1]+dp[i-2]。初始化dp[1]=1,dp[2]=2,从前向后遍历dp数组即可。
class Solution {
public:
int climbStairs(int n) {
if (n <= 2) return n;
vector<int> dp(n + 1);
dp[2] = 2;
dp[1] = 1;
for (int i = 3; i <= n; i++){
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
};
第三题是花费最小代价爬楼梯https://leetcode.cn/problems/min-cost-climbing-stairs/submissions/503688178/,还是动规五步曲,给出dp[i]:到达第i层所花费的最小体力。由于一次上楼梯的次数限制,故dp[i]只与dp[i-1],dp[i-2]有关,取两者到达第i层花费体力的最小值可得:dp[i] = min(dp[i -1] + cost[i - 1], dp[i - 2] + cost[i - 2]。初始化dp[0]=dp[1]=0,从前向后遍历dp数组。
class Solution {
public:
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size() + 1);
dp[0] = 0;
dp[1] = 0;
for (int i = 2; i <= cost.size(); i++){
dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
}
return dp[cost.size()];
}
};
不得不说,动态规划还是比贪心要清晰的多,五步曲YYDS