代码随想录刷题第38天

今天正式进入动态规划。首先了解了动态规划的基本问题与动规五步曲:1.明确DP数组与下标含义;2.给出递推公式;3.初始化DP数组;4.明确遍历顺序;5.打印DP数组。

第一题是斐波那契数https://leetcode.cn/problems/fibonacci-number/submissions/503671190/,根据以上五步曲,由于本题中递推公式与初始化题目均已给出,所以本题没有需要额外思考内容。

class Solution {
public:
    int fib(int n) {
    if (n <= 1) return n;
    vector<int> dp(n + 1);
    dp[0] = 1;
    dp[1] = 1;
    for (int i = 2; i <= n; i++){
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[n - 1];
    }
};

递归代码如下:

class Solution {
public:
    int fib(int n) {
    if (n < 2) return n;
    return fib(n - 1) + fib(n - 2);
    }
};

第二题是爬楼梯https://leetcode.cn/problems/climbing-stairs/description/,根据动态规划五步曲,首先确定dp[i]即为到达第i阶的方法数量,由于每次只能上一或二个台阶,所以dp[i]只与dp[i-1],dp[i-2]有关,dp[i] = dp[i-1]+dp[i-2]。初始化dp[1]=1,dp[2]=2,从前向后遍历dp数组即可。

class Solution {
public:
    int climbStairs(int n) {
        if (n <= 2) return n;
        vector<int> dp(n + 1);
        dp[2] = 2;
        dp[1] = 1;
        for (int i = 3; i <= n; i++){
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

第三题是花费最小代价爬楼梯https://leetcode.cn/problems/min-cost-climbing-stairs/submissions/503688178/,还是动规五步曲,给出dp[i]:到达第i层所花费的最小体力。由于一次上楼梯的次数限制,故dp[i]只与dp[i-1],dp[i-2]有关,取两者到达第i层花费体力的最小值可得:dp[i] = min(dp[i -1] + cost[i - 1], dp[i - 2] + cost[i - 2]。初始化dp[0]=dp[1]=0,从前向后遍历dp数组。

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
    vector<int> dp(cost.size() + 1);
    dp[0] = 0;
    dp[1] = 0;
    for (int i = 2; i <= cost.size(); i++){
        dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
    }
    return dp[cost.size()];
    }
};

不得不说,动态规划还是比贪心要清晰的多,五步曲YYDS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值