DAY12遗传算法

1. 遗传算法

2. 粒子群优化

3. 模拟退火

运行与处理好的代码

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False    # 正常显示负号
data = pd.read_csv('data.csv')    #读取数据

#先筛选出字符串变量
discrete_data = data.select_dtypes(include=['object']).columns.tolist()

#Home Ownership 标签编码
home_ownership_mapping = {
    'Own Home': 1,
    'Rent': 2 ,
    'Home Mortgage': 3,
    'Have Mortgage': 4,
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)

#Years in current job 标签编码
years_in_current_job_mapping = {
    '< 1 year': 1 ,
    '1 year': 2,
    '2 years': 3,
    '3 years': 4,
    '4 years': 5,
    '5 years': 6,
    '6 years': 7,
    '7 years': 8,
    '8 years': 9,
    '9 years': 10,
    '10+ years': 11,
}
data['Years in current job'] = data['Years in current job'].map(years_in_current_job_mapping)

#Purpose 独热编码,记得将bool类型转换为int类型
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv('data.csv')    #读取数据
list_final = []
for i in data.columns:
    if i not in data2.columns:
        list_final.append(i)
for i in list_final:
    data[i] = data[i].astype(int)


#Term 0-1编码
# Term 0 - 1 映射
term_mapping = {
    'Short Term': 0,
    'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist()  #把筛选出来的列名转换成列表

#连续特征用中位数补全
for feature in continuous_features:
    mode_value = data[feature].mode()[0]  # 计算众数
    data[feature].fillna(mode_value, inplace=True)  # 使用众数填充缺失值

#训练集测试集划分
from sklearn.model_selection import train_test_split
X = data.drop('Credit Default', axis=1)  # 特征
y = data['Credit Default']  # 目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)  # 划分训练集和测试集,测试集占20%

 随机森林

start_time = time.time() # 记录开始时间

rf_model = RandomForestClassifier(random_state=42)

rf_model.fit(X_train, y_train) # 在训练集上训练

rf_pred = rf_model.predict(X_test) # 在测试集上预测

end_time = time.time() # 记录结束时间

end_time - start_time:.4f

classification_report(y_test, rf_pred)

confusion_matrix(y_test, rf_pred)


from sklearn.ensemble import RandomForestClassifier #随机森林分类器

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# --- 1. 默认参数的随机森林 ---
# 评估基准模型,这里确实不需要验证集
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # 这里介绍一个新的库,time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间

print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))

核心思想:

1. 这些启发式算法都是优化器。你的目标是找到一组超参数,让你的机器学习模型在某个指标(比如验证集准确率)上表现最好。

2. 这个过程就像在一个复杂的地形(参数空间)上寻找最高峰(最佳性能)。

3. 启发式算法就是一群聪明的“探险家”,它们用不同的策略(模仿自然、物理现象等)来寻找这个最高峰,而不需要知道地形每一处的精确梯度(导数)。

遗传算法

遗传算法 (Genetic Algorithm - GA)

- 灵感来源: 生物进化,达尔文的“适者生存”。

- 简单理解: 把不同的超参数组合想象成一群“个体”。表现好的个体(高验证分)更有机会“繁殖”(它们的参数组合会被借鉴和混合),并可能发生“变异”(参数随机小改动),产生下一代。表现差的个体逐渐被淘汰。一代代下去,种群整体就会越来越适应环境(找到更好的超参数)。

- 应用感觉: 像是在大范围“撒网”搜索,通过优胜劣汰和随机变动逐步逼近最优解。适合参数空间很大、很复杂的情况。

AI时代的工具很大的好处,就是找到了一个记忆工具来帮助我们记住这个方法需要的步骤,然后我们只需要调用这个工具,就可以完成这个任务。

1. 关注输入和输出的格式和数据

2. 关注方法的前生今世和各自的优势---优缺点和应用场景

3. 关注模型本身的实现逻辑(如果用的时候很少,可跳过,借助ai实现)

学习重心转移

- ❌ 传统方式:深究算法实现细节(如遗传算法的交叉/变异操作)
- ✅ AI时代方式:
  - 输入输出规范 :明确需要什么样的数据格式,得到什么结果
  - 方法特性认知 :了解不同优化算法(遗传/粒子群/模拟退火)的适用场景
  - 工具化思维 :通过调用现成工具(如scikit-learn的 HalvingGridSearchCV )完成优化

# 定义适应度函数和个体类型
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)



##………………

# 遗传算法参数
NGEN = 10
CXPB = 0.5
MUTPB = 0.2


# 运行遗传算法
for gen in range(NGEN):
    offspring = algorithms.varAnd(pop, toolbox, cxpb=CXPB, mutpb=MUTPB)
    fits = toolbox.map(toolbox.evaluate, offspring)
    for fit, ind in zip(fits, offspring):
        ind.fitness.values = fit
    pop = toolbox.select(offspring, k=len(pop))



# 找到最优个体
best_ind = tools.selBest(pop, k=1)[0]
best_n_estimators, best_max_depth, best_min_samples_split, best_min_samples_leaf = best_ind

print(f"遗传算法优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", {
    'n_estimators': best_n_estimators,
    'max_depth': best_max_depth,
    'min_samples_split': best_min_samples_split,
    'min_samples_leaf': best_min_samples_leaf
})

## 粒子群方法

粒子群优化 (Particle Swarm Optimization - PSO)

- 灵感来源: 鸟群或鱼群觅食。

- 简单理解: 把每个超参数组合想象成一个“粒子”(鸟)。每个粒子在参数空间中“飞行”。它会记住自己飞过的最好位置,也会参考整个“鸟群”发现的最好位置,结合这两者来调整自己的飞行方向和速度,同时带点随机性。

- 应用感觉: 像是一群探险家,既有自己的探索记忆,也会互相交流信息(全局最佳位置),集体协作寻找目标。通常收敛比遗传算法快一些。

粒子群方法的思想比较简单,所以甚至可以不调库自己实现。

# 定义适应度函数,本质就是构建了一个函数实现 参数--> 评估指标的映射
ef fitness_function(params): 
    n_estimators, max_depth, min_samples_split, min_samples_leaf = params # 序列解包,允许你将一个可迭代对象(如列表、元组、字符串等)中的元素依次赋值给多个变量。
model = RandomForestClassifier(n_estimators=int(n_estimators),
                                   max_depth=int(max_depth),
                                   min_samples_split=int(min_samples_split),
                                   min_samples_leaf=int(min_samples_leaf),
                                   random_state=42)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    accuracy = accuracy_score(y_test, y_pred)
    return accuracy

# 粒子群优化算法实现
def pso(num_particles, num_iterations, c1, c2, w, bounds): # 粒子群优化算法核心函数
    # num_particles:粒子的数量,即算法中用于搜索最优解的个体数量。
    # num_iterations:迭代次数,算法运行的最大循环次数。
    # c1:认知学习因子,用于控制粒子向自身历史最佳位置移动的程度。
    # c2:社会学习因子,用于控制粒子向全局最佳位置移动的程度。
    # w:惯性权重,控制粒子的惯性,影响粒子在搜索空间中的移动速度和方向。
    # bounds:超参数的取值范围,是一个包含多个元组的列表,每个元组表示一个超参数的最小值和最大值。
####定义过程


# 超参数范围
bounds = [(50, 200), (10, 30), (2, 10), (1, 4)]  # n_estimators, max_depth, min_samples_split, min_samples_leaf

# 使用最佳参数的模型进行预测
best_model = RandomForestClassifier(n_estimators=int(best_params[0]),
                                    max_depth=int(best_params[1]),
                                    min_samples_split=int(best_params[2]),
                                    min_samples_leaf=int(best_params[3]),
                                    random_state=42)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)

print("\n粒子群优化算法优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("粒子群优化算法优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))

##  退火算法

模拟退火 (Simulated Annealing - SA)

- 灵感来源: 金属冶炼中的退火过程(缓慢冷却使金属达到最低能量稳定态)。

- 简单理解: 从一个随机的超参数组合开始。随机尝试改变一点参数。如果新组合更好,就接受它。如果新组合更差,也有一定概率接受它(尤其是在“高温”/搜索早期)。这个接受坏解的概率会随着时间(“降温”)慢慢变小。

- 应用感觉: 像一个有点“冲动”的探险家,初期愿意尝试一些看起来不太好的路径(为了跳出局部最优的小山谷),后期则越来越“保守”,专注于在当前找到的好区域附近精细搜索。擅长避免陷入局部最优。

# 定义适应度函数
…………


# 模拟退火算法实现
def simulated_annealing(initial_solution, bounds, initial_temp, final_temp, alpha):
    current_solution = initial_solution
    current_fitness = fitness_function(current_solution)
    best_solution = current_solution
    best_fitness = current_fitness
    temp = initial_temp


#实现


浙大疏锦行-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值