CSI数据的线性误差和非线性误差的消除思路

数据观察

 对CSI的相邻数据的相位角进行unwrap之后可以发现存在线性误差和非线性误差. 线性误差体现在存在一定的斜率. 非线性误差体现在不是一条直线.

线性误差

整体思路:

对于图中的曲线进行拟合, 得到一条拟合直线方程, 然后可以在原来的CSI函数值的基础上, 减去拟合直线方程的函数值, 得到没有斜率的CSI. 

斜率a的计算:

step one:假设把相位角写成这个样子

step two:对两个子载波应用公式

step three:得到a的表达式

问题就出在这里,因为我们不能确定这里的\phi_n-\phi_1什么时候可以去到比较小的函数值,按道理来说应该是相邻的两个子载波的\phi_n-\phi_1比较小,但是怎么处理呢?

但是参考论文里面都是这么写的哈哈,暂且认为正确吧。

b的计算

 结果

需要注意的是,在除去\beta的同时,我们也除去了,也就是说我们的相位被强制置零了。

如果只是除去ak不除去b的话,或者使用整个相位的平均值作为我们除去b之后的结果,就是这这个样子:


非线性误差

来源:

非线性误差主要由IQ不平衡引起,会导致子载波信号失真,并且遍布于所有子载波中。

 ωc​是子载波中心角频率,ϵA和ϵθ​分别表示增益失配和相位失配。

参数拟合

使用下面的式子进行拟合, 得到一组参数值: 

 各个参数的含义如下: 

为了匹配CSI数据曲线,采用了残差平方和最小原则,利用高斯-牛顿法求解,使用下面的r^2进行拟合度的检验,一般认为r^2 > 0.98就是比较不错的. 

拟合效果:

CSI修正

参考文献

线性误差: 

Sen S, Choudhury R R, Minka T. You are facing the Mona Lisa: spot localization using PHY layer information[C]// International Conference on Mobile Systems, Applications, and Services. ACM, 2012:183-196.

非线性误差

Perceiving Accurate CSI with Commodity WiFi Devices

图片参考

主要是个人学习,借鉴了某些组同学的论文, 在此表示感谢.

侵删. 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值