1.代码
#include <stdio.h>
#include <malloc.h>
#define QUEUE_SIZE 5
/**
* Binary tree node.
*/
typedef struct BTNode{
char element;
BTNode* left;
BTNode* right;
}BTNode, *BTNodePtr;
/**
* A queue with a number of pointers.
*/
typedef struct BTNodePtrQueue{
BTNodePtr* nodePtrs;
int front;
int rear;
}BTNodePtrQueue, *QueuePtr;
/**
* Initialize the queue.
*/
QueuePtr initQueue(){
QueuePtr resultQueuePtr = (QueuePtr)malloc(sizeof(struct BTNodePtrQueue));
resultQueuePtr->nodePtrs = (BTNodePtr*)malloc(QUEUE_SIZE * sizeof(BTNodePtr));
resultQueuePtr->front = 0;
resultQueuePtr->rear = 1;
return resultQueuePtr;
}//Of initQueue
/**
* Is the queue empty?
*/
bool isQueueEmpty(QueuePtr paraQueuePtr){
if ((paraQueuePtr->front + 1) % QUEUE_SIZE == paraQueuePtr->rear) {
return true;
}//Of if
return false;
}//Of isQueueEmpty
/**
* Add a pointer to the queue.
*/
void enqueue(QueuePtr paraQueuePtr, BTNodePtr paraBTNodePtr){
printf("front = %d, rear = %d.\r\n", paraQueuePtr->front, paraQueuePtr->rear);
if ((paraQueuePtr->rear + 1) % QUEUE_SIZE == paraQueuePtr->front % QUEUE_SIZE) {
printf("Error, trying to enqueue %c. queue full.\r\n", paraBTNodePtr->element);
return;
}//Of if
paraQueuePtr->nodePtrs[paraQueuePtr->rear] = paraBTNodePtr;
paraQueuePtr->rear = (paraQueuePtr->rear + 1) % QUEUE_SIZE;
printf("enqueue %c ends.\r\n", paraBTNodePtr->element);
}//Of enqueue
/**
* Remove an element from the queue and return.
*/
BTNodePtr dequeue(QueuePtr paraQueuePtr){
if (isQueueEmpty(paraQueuePtr)) {
printf("Error, empty queue\r\n");
return NULL;
}//Of if
paraQueuePtr->front = (paraQueuePtr->front + 1) % QUEUE_SIZE;
//BTNodePtr tempPtr = paraQueuePtr->nodePtrs[paraQueuePtr->front + 1];
printf("dequeue %c ends.\r\n", paraQueuePtr->nodePtrs[paraQueuePtr->front]->element);
return paraQueuePtr->nodePtrs[paraQueuePtr->front];
}//Of dequeue
/**
* Construct a BTNode using the given char.
*/
BTNodePtr constructBTNode(char paraChar){
BTNodePtr resultPtr = (BTNodePtr)malloc(sizeof(BTNode));
resultPtr->element = paraChar;
resultPtr->left = NULL;
resultPtr->right = NULL;
return resultPtr;
}//Of constructBTNode
/**
* Construct a binary tree using the given string.
*/
BTNodePtr stringToBTree(char* paraString){
int i;
char ch;
//Use a queue to manage the pointers
QueuePtr tempQueuePtr = initQueue();
BTNodePtr resultHeader;
BTNodePtr tempParent, tempLeftChild, tempRightChild;
i = 0;
ch = paraString[i];
resultHeader = constructBTNode(ch);
enqueue(tempQueuePtr, resultHeader);
while(!isQueueEmpty(tempQueuePtr)) {
tempParent = dequeue(tempQueuePtr);
//The left child
i ++;
ch = paraString[i];
if (ch == '#') {
tempParent->left = NULL;
} else {
tempLeftChild = constructBTNode(ch);
enqueue(tempQueuePtr, tempLeftChild);
tempParent->left = tempLeftChild;
}//Of if
//The right child
i ++;
ch = paraString[i];
if (ch == '#') {
tempParent->right = NULL;
} else {
tempRightChild = constructBTNode(ch);
enqueue(tempQueuePtr, tempRightChild);
tempParent->right = tempRightChild;
}//Of if
}//Of while
return resultHeader;
}//Of stringToBTree
/**
* Levelwise.
*/
void levelwise(BTNodePtr paraTreePtr){
//Use a queue to manage the pointers
char tempString[100];
int i = 0;
QueuePtr tempQueuePtr = initQueue();
BTNodePtr tempNodePtr;
enqueue(tempQueuePtr, paraTreePtr);
while(!isQueueEmpty(tempQueuePtr)) {
tempNodePtr = dequeue(tempQueuePtr);
//For output.
tempString[i] = tempNodePtr->element;
i ++;
if (tempNodePtr->left != NULL){
enqueue(tempQueuePtr, tempNodePtr->left);
}//Of if
if (tempNodePtr->right != NULL){
enqueue(tempQueuePtr, tempNodePtr->right);
}//Of if
}//Of while
tempString[i] = '\0';
printf("Levelwise: %s\r\n", tempString);
}//Of levelwise
/**
* Preorder.
*/
void preorder(BTNodePtr tempPtr){
if (tempPtr == NULL){
return;
}//Of if
printf("%c", tempPtr->element);
preorder(tempPtr->left);
preorder(tempPtr->right);
}//Of preorder
/**
* Inorder.
*/
void inorder(BTNodePtr tempPtr){
if (tempPtr == NULL) {
return;
}//Of if
inorder(tempPtr->left);
printf("%c", tempPtr->element);
inorder(tempPtr->right);
}//Of inorder
/**
* Post order.
*/
void postorder(BTNodePtr tempPtr){
if (tempPtr == NULL) {
return;
}//Of if
postorder(tempPtr->left);
postorder(tempPtr->right);
printf("%c", tempPtr->element);
}//Of postorder
/**
* The entrance.
*/
int main(){
BTNodePtr tempHeader;
tempHeader = constructBTNode('c');
printf("There is only one node. Preorder visit: ");
preorder(tempHeader);
printf("\r\n");
char* tempString = "acde#bf######";
tempHeader = stringToBTree(tempString);
printf("Preorder: ");
preorder(tempHeader);
printf("\r\n");
printf("Inorder: ");
inorder(tempHeader);
printf("\r\n");
printf("Postorder: ");
postorder(tempHeader);
printf("\r\n");
printf("Levelwise: ");
levelwise(tempHeader);
printf("\r\n");
return 1;
}//Of main
2.运行结果
There is only one node. Preorder visit: c
front = 0, rear = 1.
enqueue a ends.
dequeue a ends.
front = 1, rear = 2.
enqueue c ends.
front = 1, rear = 3.
enqueue d ends.
dequeue c ends.
front = 2, rear = 4.
enqueue e ends.
dequeue d ends.
front = 3, rear = 0.
enqueue b ends.
front = 3, rear = 1.
enqueue f ends.
dequeue e ends.
dequeue b ends.
dequeue f ends.
Preorder: acedbf
Inorder: ecabdf
Postorder: ecbfda
Levelwise: front = 0, rear = 1.
enqueue a ends.
dequeue a ends.
front = 1, rear = 2.
enqueue c ends.
front = 1, rear = 3.
enqueue d ends.
dequeue c ends.
front = 2, rear = 4.
enqueue e ends.
dequeue d ends.
front = 3, rear = 0.
enqueue b ends.
front = 3, rear = 1.
enqueue f ends.
dequeue e ends.
dequeue b ends.
dequeue f ends.
Levelwise: acdebf
一:
一棵二叉树是结点的一个有限集合,该集合 :
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
二:
1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
三:
1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是2^k -1 ,则它就是满二叉树。
2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。
四:二叉树的性质(重要*)
1. 若规定根节点的层数为 1 ,则一棵非空二叉树的 第 i 层上最多有 2^(i-1)个结点(排满时).
2. 若规定根节点的层数为 1 ,则 深度为 h 的二叉树的最大结点数是2^h -1(满二叉树).
3. 对任何一棵二叉 树 , 如果度为 0 其叶结点个数为n0 , 度为 2 的分支结点个数为n2 , 则有
n0 =n2 + 1.
4. 若规定根节点的层数为 1 ,具有 n 个结点的满二叉树的深度 ,h= log2(n+1).(log2(n+1)表示log以2为底数,n+1为对数)。
5.对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从 0开始编号,则对于序号为 i 的结点有:
a. 若i > 0, i 位置节点的双亲序号: (i-1)/2 ; i=0 , i 为根节点编号,无双亲节点
b. 若 2i+1<n ,左孩子序号: 2i+1 , 2i+1>=n 否则无左孩子
c. 若 2i+2<n ,右孩子序号: 2i+2 , 2i+2>=n 否则无右孩子