数据结构--二叉树

本文提供了一个C语言程序,用于根据给定的字符串构造二叉树并进行前序、中序、后序和层次遍历。程序定义了二叉树节点结构和基于指针的队列,用于管理遍历过程中的节点。此外,还讨论了二叉树的概念,包括满二叉树和完全二叉树的定义以及二叉树的一些性质。
摘要由CSDN通过智能技术生成

1.代码

#include <stdio.h>
#include <malloc.h>

#define QUEUE_SIZE 5

/**
 * Binary tree node.
 */
typedef struct BTNode{
	char element;
	BTNode* left;
	BTNode* right;
}BTNode, *BTNodePtr;

/**
 * A queue with a number of pointers.
 */
typedef struct BTNodePtrQueue{
	BTNodePtr* nodePtrs;
	int front;
	int rear;
}BTNodePtrQueue, *QueuePtr;

/**
 * Initialize the queue.
 */
QueuePtr initQueue(){
	QueuePtr resultQueuePtr = (QueuePtr)malloc(sizeof(struct BTNodePtrQueue));
	resultQueuePtr->nodePtrs = (BTNodePtr*)malloc(QUEUE_SIZE * sizeof(BTNodePtr));
	resultQueuePtr->front = 0;
	resultQueuePtr->rear = 1;
	return resultQueuePtr;
}//Of initQueue

/**
 * Is the queue empty?
 */
bool isQueueEmpty(QueuePtr paraQueuePtr){
	if ((paraQueuePtr->front + 1) % QUEUE_SIZE == paraQueuePtr->rear) {
		return true;
	}//Of if

	return false;
}//Of isQueueEmpty

/**
 * Add a pointer to the queue.
 */
void enqueue(QueuePtr paraQueuePtr, BTNodePtr paraBTNodePtr){
	printf("front = %d, rear = %d.\r\n", paraQueuePtr->front, paraQueuePtr->rear);
	if ((paraQueuePtr->rear + 1) % QUEUE_SIZE == paraQueuePtr->front % QUEUE_SIZE) {
		printf("Error, trying to enqueue %c. queue full.\r\n", paraBTNodePtr->element);
		return;
	}//Of if
	paraQueuePtr->nodePtrs[paraQueuePtr->rear] = paraBTNodePtr;
	paraQueuePtr->rear = (paraQueuePtr->rear + 1) % QUEUE_SIZE;
	printf("enqueue %c ends.\r\n", paraBTNodePtr->element);
}//Of enqueue

/**
 * Remove an element from the queue and return.
 */
BTNodePtr dequeue(QueuePtr paraQueuePtr){
	if (isQueueEmpty(paraQueuePtr)) {
		printf("Error, empty queue\r\n");
		return NULL;
	}//Of if

	paraQueuePtr->front = (paraQueuePtr->front + 1) % QUEUE_SIZE;
	//BTNodePtr tempPtr = paraQueuePtr->nodePtrs[paraQueuePtr->front + 1];

	printf("dequeue %c ends.\r\n", paraQueuePtr->nodePtrs[paraQueuePtr->front]->element);
	return paraQueuePtr->nodePtrs[paraQueuePtr->front];
}//Of dequeue

/**
 * Construct a BTNode using the given char.
 */
BTNodePtr constructBTNode(char paraChar){
	BTNodePtr resultPtr = (BTNodePtr)malloc(sizeof(BTNode));
	resultPtr->element = paraChar;
	resultPtr->left = NULL;
	resultPtr->right = NULL;
	return resultPtr;
}//Of constructBTNode

/**
 * Construct a binary tree using the given string.
 */
BTNodePtr stringToBTree(char* paraString){
	int i;
	char ch;

	//Use a queue to manage the pointers
	QueuePtr tempQueuePtr = initQueue();

	BTNodePtr resultHeader;
	BTNodePtr tempParent, tempLeftChild, tempRightChild;
	i = 0;
	ch = paraString[i];
	resultHeader = constructBTNode(ch);
	enqueue(tempQueuePtr, resultHeader);

	while(!isQueueEmpty(tempQueuePtr)) {
		tempParent = dequeue(tempQueuePtr);

		//The left child
		i ++;
		ch = paraString[i];
		if (ch == '#') {
			tempParent->left = NULL;
		} else {
			tempLeftChild = constructBTNode(ch);
			enqueue(tempQueuePtr, tempLeftChild);
			tempParent->left = tempLeftChild;
		}//Of if

		
		//The right child
		i ++;
		ch = paraString[i];
		if (ch == '#') {
			tempParent->right = NULL;
		} else {
			tempRightChild = constructBTNode(ch);
			enqueue(tempQueuePtr, tempRightChild);
			tempParent->right = tempRightChild;
		}//Of if
	}//Of while

	return resultHeader;
}//Of stringToBTree

/**
 * Levelwise.
 */
void levelwise(BTNodePtr paraTreePtr){
	//Use a queue to manage the pointers
	char tempString[100];
	int i = 0;
	QueuePtr tempQueuePtr = initQueue();
	BTNodePtr tempNodePtr;
	enqueue(tempQueuePtr, paraTreePtr);
	while(!isQueueEmpty(tempQueuePtr)) {
		tempNodePtr = dequeue(tempQueuePtr);
		
		//For output.
		tempString[i] = tempNodePtr->element;
		i ++;

		if (tempNodePtr->left != NULL){
			enqueue(tempQueuePtr, tempNodePtr->left);
		}//Of if
		if (tempNodePtr->right != NULL){
			enqueue(tempQueuePtr, tempNodePtr->right);
		}//Of if
	}//Of while
	tempString[i] = '\0';

	printf("Levelwise: %s\r\n", tempString);
}//Of levelwise

/**
 * Preorder.
 */
void preorder(BTNodePtr tempPtr){
	if (tempPtr == NULL){
		return;
	}//Of if

	printf("%c", tempPtr->element);
	preorder(tempPtr->left);
	preorder(tempPtr->right);
}//Of preorder

/**
 * Inorder.
 */
void inorder(BTNodePtr tempPtr){
	if (tempPtr == NULL) {
		return;
	}//Of if

	inorder(tempPtr->left);
	printf("%c", tempPtr->element);
	inorder(tempPtr->right);
}//Of inorder

/**
 * Post order.
 */
void postorder(BTNodePtr tempPtr){
	if (tempPtr == NULL) {
		return;
	}//Of if

	postorder(tempPtr->left);
	postorder(tempPtr->right);
	printf("%c", tempPtr->element);
}//Of postorder

/**
 * The entrance.
 */
int main(){
	BTNodePtr tempHeader;
	tempHeader = constructBTNode('c');
	printf("There is only one node. Preorder visit: ");
	preorder(tempHeader);
	printf("\r\n");

	char* tempString = "acde#bf######";

	tempHeader = stringToBTree(tempString);
	printf("Preorder: ");
	preorder(tempHeader);
	printf("\r\n");
	printf("Inorder: ");
	inorder(tempHeader);
	printf("\r\n");
	printf("Postorder: ");
	postorder(tempHeader);
	printf("\r\n");
	printf("Levelwise: ");
	levelwise(tempHeader);
	printf("\r\n");

	return 1;
}//Of main

2.运行结果

There is only one node. Preorder visit: c
front = 0, rear = 1.
enqueue a ends.
dequeue a ends.
front = 1, rear = 2.
enqueue c ends.
front = 1, rear = 3.
enqueue d ends.
dequeue c ends.
front = 2, rear = 4.
enqueue e ends.
dequeue d ends.
front = 3, rear = 0.
enqueue b ends.
front = 3, rear = 1.
enqueue f ends.
dequeue e ends.
dequeue b ends.
dequeue f ends.
Preorder: acedbf
Inorder: ecabdf
Postorder: ecbfda
Levelwise: front = 0, rear = 1.
enqueue a ends.
dequeue a ends.
front = 1, rear = 2.
enqueue c ends.
front = 1, rear = 3.
enqueue d ends.
dequeue c ends.
front = 2, rear = 4.
enqueue e ends.
dequeue d ends.
front = 3, rear = 0.
enqueue b ends.
front = 3, rear = 1.
enqueue f ends.
dequeue e ends.
dequeue b ends.
dequeue f ends.
Levelwise: acdebf

一:

一棵二叉树是结点的一个有限集合,该集合 :
1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

二:

1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树

三:

1. 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是2^k -1 ,则它就是满二叉树。

2. 完全二叉树:完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

四:二叉树的性质(重要*)
1. 若规定根节点的层数为 1 ,则一棵非空二叉树的 第 i 层上最多有 2^(i-1)个结点(排满时).
2. 若规定根节点的层数为 1 ,则 深度为 h 的二叉树的最大结点数是2^h -1(满二叉树).
3. 对任何一棵二叉 树 , 如果度为 0 其叶结点个数为n0  , 度为 2 的分支结点个数为n2  , 则有
n0 =n2 + 1.
4. 若规定根节点的层数为 1 ,具有 n 个结点的满二叉树的深度 ,h= log2(n+1).(log2(n+1)表示log以2为底数,n+1为对数)。
5.对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从 0开始编号,则对于序号为 i 的结点有:
  a. 若i  > 0, i 位置节点的双亲序号: (i-1)/2 ; i=0 , i 为根节点编号,无双亲节点
  b. 若 2i+1<n ,左孩子序号: 2i+1 , 2i+1>=n 否则无左孩子
  c. 若 2i+2<n ,右孩子序号: 2i+2 , 2i+2>=n 否则无右孩子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值