国防部计划用无线网络连接若干个边防哨所。2 种不同的通讯技术用来搭建无线网络;
每个边防哨所都要配备无线电收发器;有一些哨所还可以增配卫星电话。
任意两个配备了一条卫星电话线路的哨所(两边都ᤕ有卫星电话)均可以通话,无论他们相距多远。而只通过无线电收发器通话的哨所之间的距离不能超过 �D,这是受收发器的功率限制。收发器的功率越高,通话距离 �D 会更远,但同时价格也会更贵。
收发器需要统一购买和安装,所以全部哨所只能选择安装一种型号的收发器。换句话说,每一对哨所之间的通话距离都是同一个 �D。你的任务是确定收发器必须的最小通话距离 �D,使得每一对哨所之间至少有一条通话路径(直接的或者间接的)。
输入格式
从 wireless.in 中输入数据第 1 行,2 个整数 �S 和 �P,�S 表示可安装的卫星电话的哨所数,�P 表示边防哨所的数量。接下里 �P 行,每行两个整数 �,�x,y 描述一个哨所的平面坐标 (�,�)(x,y),以 km 为单位。
输出格式
输出 wireless.out 中
第 1 行,1 个实数 �D,表示无线电收发器的最小传输距离,精确到小数点后两位。
输入输出样例
输入 #1复制
2 4 0 100 0 300 0 600 150 750
输出 #1复制
212.13
说明/提示
对于 20%20% 的数据:�=2,�=1P=2,S=1
对于另外 20%20% 的数据:�=4,�=2P=4,S=2
对于 100%100% 的数据保证:1≤�≤1001≤S≤100,�<�≤500S<P≤500,0≤�,�≤100000≤x,y≤10000。
这个的题与标准的造最小生成树不同,他还有一些的改变,就是最后的出口时当k=q-n的时候就可以了而不需要达到q-1的值,因为其中有n个通讯设备所以说只需要将最后的那个截至条件改一下就好了。
#include<stdio.h>
#include<math.h>
int f[100001],a[100001],b[100001], s, p, n, k;
double ans;
struct node
{
double x, y, z;
}e[1000001];
int find(int x)
{
if(x != f[x])
{
f[x] = find(f[x]);
}
return fa[x];
}
void unity(int x, int y)
{
int r1 = find(x);
int r2 = find(y);
fa[r1] = r2;
}
void q(int left,int right)
{
int i,j;
struct node t;
if(left>right){
return ;
}
i=left;
j=right;
while(i!=j){
while(e[j].z>=e[left].z&&i<j){
j--;
}
while(e[i].z<=e[left].z&&i<j){
i++;
}
if(i<j){
t=e[i];
e[i]=e[j];
e[j]=t;
}
}
t=e[left];
e[left]=e[i];
e[i]=t;
q(left,i-1);
q(i+1,right);
return ;
}
int main()
{
scanf("%d %d", &s, &p);
for(int i = 1; i <= p; i++)
{
scanf("%d %d", &a[i], &b[i]);
for(int j = 1; j < i; j++)
{
n++;
e[n].z = sqrt((a[i] - a[j]) * (a[i] - a[j]) + (b[i] - b[j]) * (b[i] - b[j]));
e[n].x = i;
e[n].y = j;
}
}
for(int i = 1; i <= p; i++)
{
f[i] = i;
}
q(1,n);
for(int i = 1; i <= n; i++)
{
if(find(e[i].x) != find(e[i].y))
{
unity(e[i].x, e[i].y);
ans = e[i].z;
k++;
if(k >= p - s)
{
printf("%.2lf", ans);
return 0;
}
}
}
return 0;
}