常用格式
{
"instruction": "回答以下用户问题,仅输出答案。",
"input": "1+1等于几?",
"output": "2"
}
适用范围:用于明确指令的问答系统,特别是在需要简洁回答的场景,较为常用。在这个例子中,instruction
是给予模型的任务指令,明确告知模型需要完成的具体任务;input
是为了完成任务所需的用户提问或相关信息;而 output
则是模型应产生的预期回答。
举例:自动化客服系统、快速FAQ响应。
优缺点:
优点:
明确性:instruction 清晰指示模型需要完成的任务,减少歧义。
简洁性:直接输出答案,易于快速处理。
效率高:特别适合处理大量简单问题。
缺点:上下文缺失:对于需要背景信息的复杂问题支持不足。
灵活性有限:不适合需要多步骤推理的情境。
简单问答格式
{
"question": "7.32和7.23哪个数更大?",
"answer": "比较7.32和7.23的大小:\n1. 整数部分都是7,相等。\n2. 十分位,7.32是3,7.23是2。3大于2。\n因此,无需继续比较,可以得出7.32大于7.23。\n答案:7.32更大。"
}
适用范围:适合需要详细解释或推理的场景,如教育、技术支持。
举例:在线学习平台、技术问答网站。
优缺点:
优点:
解释性强:提供详细推理过程,帮助用户理解问题。
适应性广:能够处理更复杂的问题和多样化的回答。
缺点:
信息冗余:对于简单问题,可能产生过多信息,影响用户体验。
解析复杂:需要更复杂的模型来生成这种格式的回答。
QA对格式
{
"context": "相关背景信息。",
"question": "问题是什么?",
"answer": "答案是什么?"
}
适用范围:需要背景信息的问答系统,适合知识密集型应用。
举例:知识库查询、专业文档支持。
优缺点:
优点:
上下文丰富:有助于提高回答的准确性和相关性。
处理复杂性:可以适应复杂问题,提供更全面的答案。
缺点:
训练数据需求高:需要更多样本以涵盖各种背景信息。
处理复杂度:上下文管理增加了实现的复杂性
对话格式
{
"user": "用户输入的问题",
"assistant": "助手的回答"
}
适用范围:用于模拟真实的对话场景,适合交互式问答系统。
举例:智能聊天机器人、客户支持系统。
优缺点:
优点:
自然对话流:能够模拟人类的对话方式,增强用户体验。
上下文跟踪:便于管理多轮对话的上下文。
缺点:
解析复杂:需要更复杂的模型和算法来处理上下文。
对话历史管理困难:保持对话连贯性可能较为复杂。
结构化数据格式
{
"items": [
{"question": "问1", "answer": "答1"},
{"question": "问2", "answer": "答2"}
]
}
适用范围:适合批量处理问答数据,尤其在数据集构建和知识图谱中。
举例:数据整理、训练集构建。
优缺点:
优点:
批量处理:能够高效地处理多个问答对。
灵活性:适用于多种数据分析和处理场景。
缺点:
信息冗余:可能导致数据冗余,增加解析复杂度。
结构要求高:需要对数据格式进行严格管理。