一键提取人声 、伴奏 免费人声、伴奏 音频分离软件分享——UVR5下载安装教程

引言

在处理视频及音频编辑的过程中,人声与伴奏的分离是一项广受欢迎且实用的功能, 但是市面上大多人声分离软件都需付费。今天要分享的是Ultimate Vocal Remover 5 (UVR5),一款跨平台(Windows、Mac、Linux)的专业音频工具。它的核心优势在于其精准的人声与伴奏分离技术。借助先进的AI算法,它能够智能地分析音频文件,将人声与伴奏清晰地区分开来,让音频创作更加便捷。

官网链接:https://github.com/Anjok07/ultimatevocalremovergui

如果觉得官网下载太慢,可在公众号后台回复【UVR5】获取百度网盘链接(仅windows)

注意:如果用户尝试转换非 WAV 文件,应该安装 FFmpeg,否则应用程序将引发错误。如未安装FFmpeg,点击跳转→FFmpeg超详细安装教程

公众号:喜欢睡觉的why

Windows安装教程

1、打开官网,找到 "Main Download Link" 点击下载

 2、 双击打开下载的安装包,选择 “I accept the agreement”,点击 “Next”。

 3、 选择安装路径,这里安装到了D盘,为了驱动器的稳定性建议选择C盘, 点击 “Next”。

4、选择 “create a desktop shortcut” 创建桌面快捷键,然后点击 “Next”。

5、点击 ”Install“,下载软件

6、点击 “Finish” ,完成安装

7、运行驱动器,以下是简单的使用教程

以上就是本期的全部内容啦~更详细的使用教程可在b站搜索,喜欢的话扫描下方二维码点个关注哦❤~

vx公众号:喜欢睡觉的why

### UVR5 的代码实现与版本下载 UVR5 是一款基于 `python-audio-separator` 开发的开源工具,主要用于音频人声伴奏分离。其核心功能依赖于深度学习模型以及高效的批处理能力[^4]。 #### 官方资源获取 UVR5 的官方项目并未托管在一个集中式的仓库中,而是通过多个平台提供服务和支持。以下是几个常见的获取途径: 1. **Colab 版本**: 如果希望快速上手并测试 UVR5 功能,可以优先考虑 Google Colab 提供的支持环境。此版本无需本地安装复杂依赖项即可运行。具体链接可参考类似的社区分享页面或 GitHub 项目说明文档。 2. **GitHub 社区维护版**: 部分开发者基于原始项目进行了改进和优化,并将其发布到个人 GitHub 账号下。例如,有开发者提供了增强版的 UVR5 工具链,允许用户更灵活地调整参数设置。推荐访问以下地址以查找最新版本: ```plaintext https://github.com/search?q=UVR5&type=repositories ``` 3. **Hugging Face Spaces**: Hugging Face 平台上的 UVR5 实现虽然存在一定的性能瓶颈(如速度较慢),但它仍然是一个不错的在线试用入口。如果需要进一步了解其实现细节,可以从对应的源码入手分析。 #### 本地部署指南 对于希望通过 Python 和其他框架自行搭建 UVR5 环境的情况,需完成以下几个关键步骤: - **依赖库安装**: 使用 pip 命令安装必要的第三方模块,比如 PyTorch、TensorFlow 或 Librosa。 ```bash pip install torch torchvision torchaudio librosa numpy scipy soundfile ``` - **模型文件准备**: 大多数情况下,预训练好的分离模型会被单独打包存储。确保从可信渠道下载这些权重文件,并按照指定路径放置好。 - **脚本配置**: 参考现有项目的 main.py 文件或其他启动脚本,适当修改输入输出目录及相关超参设定值。 ```python import os from audio_separator import SeparatorModel def run_uvr5(input_path, output_dir): model = SeparatorModel(model_name="mdxnet", device='cuda' if torch.cuda.is_available() else 'cpu') if not os.path.exists(output_dir): os.makedirs(output_dir) result = model.separate_audio_file( input_filepath=input_path, export_root=output_dir ) return result if __name__ == "__main__": input_audio = "./example/song.mp3" save_to_folder = "./output/" run_uvr5(input_audio, save_to_folder) ``` 上述代码片段展示了如何加载模型并对单个音频文件执行分离操作。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值