声音分割软件 UVR5

默认设置:512

选择:vocals only 人声输出

选择你需要的模型 choose VR model

download 选择你要下载的音频模型(这样你就可以选择更多模型)

来提取你的人声,干净,无杂质。choose process methood选择你合适的模型

### UVR5 的代码实现与版本下载 UVR5 是一款基于 `python-audio-separator` 开发的开源工具,主要用于音频的人声与伴奏分离。其核心功能依赖于深度学习模型以及高效的批处理能力[^4]。 #### 官方资源获取 UVR5 的官方项目并未托管在一个集中式的仓库中,而是通过多个平台提供服务和支持。以下是几个常见的获取途径: 1. **Colab 版本**: 如果希望快速上手并测试 UVR5 功能,可以优先考虑 Google Colab 提供的支持环境。此版本无需本地安装复杂依赖项即可运行。具体链接可参考类似的社区分享页面或 GitHub 项目说明文档。 2. **GitHub 社区维护版**: 部分开发者基于原始项目进行了改进和优化,并将其发布到个人 GitHub 账号下。例如,有开发者提供了增强版的 UVR5 工具链,允许用户更灵活地调整参数设置。推荐访问以下地址以查找最新版本: ```plaintext https://github.com/search?q=UVR5&type=repositories ``` 3. **Hugging Face Spaces**: Hugging Face 平台上的 UVR5 实现虽然存在一定的性能瓶颈(如速度较慢),但它仍然是一个不错的在线试用入口。如果需要进一步了解其实现细节,可以从对应的源码入手分析。 #### 本地部署指南 对于希望通过 Python 和其他框架自行搭建 UVR5 环境的情况,需完成以下几个关键步骤: - **依赖库安装**: 使用 pip 命令安装必要的第三方模块,比如 PyTorch、TensorFlow 或 Librosa。 ```bash pip install torch torchvision torchaudio librosa numpy scipy soundfile ``` - **模型文件准备**: 大多数情况下,预训练好的分离模型会被单独打包存储。确保从可信渠道下载这些权重文件,并按照指定路径放置好。 - **脚本配置**: 参考现有项目的 main.py 文件或其他启动脚本,适当修改输入输出目录及相关超参设定值。 ```python import os from audio_separator import SeparatorModel def run_uvr5(input_path, output_dir): model = SeparatorModel(model_name="mdxnet", device='cuda' if torch.cuda.is_available() else 'cpu') if not os.path.exists(output_dir): os.makedirs(output_dir) result = model.separate_audio_file( input_filepath=input_path, export_root=output_dir ) return result if __name__ == "__main__": input_audio = "./example/song.mp3" save_to_folder = "./output/" run_uvr5(input_audio, save_to_folder) ``` 上述代码片段展示了如何加载模型并对单个音频文件执行分离操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值