Hadoop单词统计实践:结果分析全流程详尽指南

前言

Hadoop的单词统计(Word Count)是一个经典的MapReduce示例,用于计算输入文本文件中每个单词出现的次数。本指南旨在帮助读者在搭建完Hadoop集群后运行单词统计程序,并最终分析输出结果,全程详细解析,帮助读者深入理解大数据处理的核心流程。

一、启动hadoop HA高可用集群

1. 启动hadoop集群

切换到Hadoop安装目录的sbin子目录,并执行启动脚本。

位置:/usr/local/src/hadoop/sbin

./start-all.sh

2. 启动zookeeper集群

ZooKeeper是Hadoop HA高可用性的关键组件,确保ZooKeeper集群正常启动。

位置:/usr/local/src/zookeeper/bin

./zkServer.sh start

3. 验证集群状态

通过Hadoop和ZooKeeper的管理界面或使用命令行工具,验证所有服务组件均正常运行。
在这里插入图片描述

4.启动脚本提供

hadoop

#!/bin/bash
case $1 in
"start"){
   
/usr/local/src/hadoop/sbin/start-dfs.sh
/usr/local/src/hadoop/sbin/start-yarn.sh
};;
"stop"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值