目录
LeeCode 309.最佳买卖股票时机含冷冻期
309. 最佳买卖股票时机含冷冻期 - 力扣(LeetCode)
动规五部曲:
1.确定dp数组及下标含义: dp[i][j],第i天状态为j,所剩的最多现金。状态一:持有股票状态(今天买入股票,或之前买入股票后没有操作,一直持有);状态二:保持卖出股票的状态(已度过了冷冻期);状态三:今天卖出股票;状态四:冷冻状态;
2.确定递推公式:dp[i][0] = max(dp[i - 1][0], dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]); dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]); dp[i][2] = dp[i - 1][0] + prices[i]; dp[i][3] = dp[i - 1][2];
3.dp数组如何初始化:dp[0][0] = -prices[0]; dp[0][1] = 0; dp[0][2] = 0; dp[0][3] = 0;
4.确定遍历顺序:从前到后遍历;
5.举例递推dp数组;
代码:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if (n == 0) return 0;
vector<vector<int>> dp(n, vector<int>(4, 0));
dp[0][0] -= prices[0];
for (int i = 1; i < n; i ++) {
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
dp[i][2] = dp[i - 1][0] + prices[i];
dp[i][3] = dp[i - 1][2];
}
return max(dp[n - 1][3], max(dp[n - 1][1], dp[n - 1][2]));
}
};
时间复杂度:O(n) 空间复杂度:O(n)
LeeCode 714.买卖股票的最佳时机含手续费
714. 买卖股票的最佳时机含手续费 - 力扣(LeetCode)
贪心算法
代码:
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
int result = 0;
int minPrice = prices[0]; //记录最低价格
for (int i = 1; i < prices.size(); i++) {
//买入
if (prices[i] < minPrice) minPrice = prices[i];
//保持原有状态
if (prices[i] >= minPrice && prices[i] <= minPrice + fee) continue;
//计算利润
if (prices[i] > minPrice + fee) {
result += prices[i] - minPrice - fee;
minPrice = prices[i] - fee; //避免重复扣手续费
}
}
return result;
}
};
时间复杂度:O(n) 空间复杂度:O(1)
动态规划法
思路:
与 122.买卖股票的最佳时机II 解题步骤基本一致,差别在于递推公式中需要考虑手续费问题。
递推公式:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
代码:
class Solution {
public:
int maxProfit(vector<int>& prices, int fee) {
int n = prices.size();
vector<vector<int>> dp(n, vector<int>(2, 0));
dp[0][0] -= prices[0];
for (int i = 1; i < n; i++) {
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
}
return max(dp[n - 1][0], dp[n - 1][1]);
}
};
时间复杂度:O(n) 空间复杂度:O(n)