【C++】---二叉搜索树
一、二叉搜索树概念
二叉搜索树又叫二叉排序数,它或者是空树,或者是具有以下性质的二叉树:
- 如果它的左子树不为空,那么左子树上所有节点的值都小于根结点的值。
- 如果它的右子树不为空,那么右子树上所有节点的值都大于根节点的值。
- 它的左右子树也是二叉搜索树。
int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};
比如说:这个数组都可以将它化为二叉搜索树
总结:在左子树值比根小,右子树值比根大。 当树走中序遍历时,序列都是有序的。
二叉搜索树 的 结构定义:
#include<iostream>
using namespace std;
template<class K>
struct BSTreeNode
{
BSTreeNode<K>* _left;
BSTreeNode<K>* _right;
K _key;
BSTreeNode(const K& key)
:_left(nullptr)
, _right(nullptr)
, _key(key)
{
}
};
template<class K>
class BSTree
{
typedef BSTreeNode<K> Node;
private:
Node* _root;
public:
BSTree()
:_root(nullptr)
{
}
};
二、二叉搜索树操作(非递归)
1.二叉搜索树的查找 (非递归)
利用二分查找的方法,借助我们去二叉搜索树中查找节点。
查找的时间复杂度:最坏的情况,就是查找高度(h=logN)次,就可以判断一个值在不在节点里面。
(1)查找
查找的思路:
- key比当前结点的值小,往左走!
- key比当前结点的值大,往右走!
- key==当前结点的值,就找到了!
// 查找:
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (key < cur->_key)
{
cur = cur->_left;
}
else if (key > cur->_key)
{
cur = cur->_right;
}
else
{
return cur;// 找到了!
}
}
return nullptr;// 遍历完了,都还没找到!
}
(2)中序遍历
由于根节点_root是私有成员变量,如果在main函数里面来进行中序遍历的话,这就是在类外对私有成员进行访问,这是不合法的!
所以说我们要解决这个问题,可以用这样:
在类的public内的 中序遍历 InOrder 里面 再套一层私有的中序遍历:_InOrder,这样,_InOrder身为私有函数,就可以访问:私有变量_root!
private:
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
cout << root->_key << endl;
_InOrder(root->_right);
}
public:
// 中序遍历:
void InOrder() //这个函数 类外可以直接访问!
{
_InOrder(_root); // 这个函数,是 私有函数 对 私有成员 的访问!
cout << endl;
}
2.二叉搜索树的插入(非递归)
插入节点分两步:
(1)找位置
①key比当前节点值大,向左走
②key比当前节点值小,向右走
③key等于当前节点值,该节点值已经存在,插入失败
(2)插入
①key比父亲节点值小就插入父亲左子树
②key比父亲节点值大就插入父亲右子树
由于插入后,要将节点链接到树中,因此要定义parent节点,用来链接新节点:
// 插入:
bool Insert(const K& key)
{
if (_root == nullptr)
{
_root = new Node(key);
return true;
}
Node* cur = _root;
Node* parent = nullptr;
// (1) 找到插入的位置
while (cur)
{
if (key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else if (key > cur->_key)
{
parent = cur;
cur = cur->_right;
}
else
{
return false;// 二叉搜索树不允许数据冗余!
}
}
cur = new Node(key);
// (2) 判断
if (key<parent->_key)
{
parent->_left = cur;
}
else
{
parent->_right = cur;
}
return true;
}
3.二叉搜索树的删除(非递归)
非递归删除:
(1)找位置
①key比当前节点值大,向左走
②key比当前节点值小,向右走
③key等于当前节点值,找到了,准备删除
(2)删除,有两种删除方法:非递归和递归
非递归删除:
①该节点没有孩子,即该节点是叶子节点,删除节点后把父亲指向自己的指针置空
②该节点有一个孩子,就把该节点的孩子节点的链接给该节点的父亲,顶替自己的位置,
①可以当成②的特殊情况
③该节点有两个孩子,找比它自己的左孩子大,比它自己的右孩子小的节点替换它
(也就是拿它的左子树的最大节点或右子树的最小节点替换它),
替换之后,该节点就只有一个孩子或没有孩子了,就变成①或②了。
// 删除
bool erase(const K& key)
{
Node* cur = _root;
Node* parent = nullptr;
// (1) 找到插入的位置
while (cur)
{
if (key < cur->_key)
{
parent = cur;
cur = cur->_left;
}
else if (key > cur->_key)
{
parent = cur;
cur = cur->_right;
}
else
{
break;
}
}
// 1、2、 (子 代替 父亲的位置)
// 大前提:如果要删除的节点,left为空
if (cur->_left == nullptr)
{
// 如果要删除根!
if (cur == _root)
{
_root = cur->_right;// 那就让cur的右当根
}
// 如果要删除的不是根!
else
{
// 如果要删除的节点cur,在父亲的左边。
// 因为是替代法,所以说要让 子 的位置代替 父亲 的位置,但是 子 的位置只有_right存在,所以说会把_right的位置放到即将要删除cur的位置。
if (parent->_left == cur)
{
parent->_left = cur->_right;
}
else
{
parent->_right = cur->_right;
}
}
delete cur;
}
// 大前提:如果要删除的节点,right为空
else if (cur->_right == nullptr)
{
if (cur == _root)
{
_root = cur->_left;
}
else
{
// 因为是替代法,所以说要让 子 的位置代替 父亲 的位置,但是 子 的位置只有_left存在,所以说会把_left的位置放到即将要删除cur的位置。
if (parent->_left == cur)
{
parent->_left = cur->_left;
}
else
{
parent->_right = cur->_left;
}
}
delete cur;
}
// 3、要删除的cur不只有一个节点。可能有多个节点,甚至整个指子树
// 找到要删除节点cur,左子树最大的节点,右子树最小的节点,来代替cur的位置。
else
{
// 要么找cur左子树中的max,要么就找右子树中的min
// 这里 以 RightMin为例!
// (1)找到 RightMin (就像找 cur那样)
Node* RightMin = cur->_right;
Node* RightMinParent = cur; // 定义 RightMinParent 为了方便后续节点的连接。
while (RightMin->_left)
{
RightMinParent = RightMin;
RightMin = RightMin->_left;
}
// (2)找到了 就交换!
swap(RightMin->_key, cur->_key);
// (3) 交换完后 就链接!
if (RightMinParent->_left == RightMin)
RightMinParent->_left = cur;
else
RightMinParent->_right = cur;
// 链接完成!
delete cur;
}
return true;
}
递归删除:
相对于非递归,只需要修改找到了要修改的代码:找到了后不需要管cur到底左为空、右为空、还是左右都不为空
① 找要删除节点的右子树的最小节点并把它的值保存起来
② 删除右子树的最小节点
③ 把要删除的节点值替换成右子树的最小节点值
else//左右都不为空,替换法删除
{
//找右子树最小节点
Node* minRight = cur->_right;
while (minRight->_left)
{
minRight = minRight->_left;
}
//用min保存右子树最小节点的值
K min = minRight->_key;
//递归调用自己去替换删除节点,一定会走到左为空的情况处理
this->Erase(min);
//删除完毕替换节点之后,把cur的值替换成min
cur->_key = min;
}
三、二叉搜索树操作(递归)
理解了非递归操作以后, 递归操作就很简单了:
#include<iostream>
using namespace std;
//树的节点可以支持多种类型
template<class K>
//树节点结构
struct BSTreeNode
{
BSTreeNode<K>* _left;//左指针
BSTreeNode<K>* _right;//右指针
K _key;//值
//构造函数
BSTreeNode(const K& key)
:_left(nullptr)
, _right(nullptr)
, _key(key)
{}
};
template<class K>
class BStree//树结构
{
typedef BSTreeNode<K> Node;
public:
//递归查找
Node* FindR(const K& key)
{
return _FindR(_root, key);
}
//递归插入
bool InsertR(const K& key)
{
return _InsertR(_root, key);
}
//递归删除
bool EraseR(const K& key)
{
return _EraseR(_root, key);
}
private:
Node* _root;
};
由于_root是私有的,可以把递归子函数查找、插入、删除都定义成私有的
1.二叉搜索树的查找(递归)
private:
//查找
Node* _FindR(Node* root, const K& key)
{
if (root == nullptr)//没找到
{
return nullptr;
}
if (key < root->_key)//到左子树去找
{
FindR(root->_left, key);
}
else if (key > root->_key)//到右子树去找
{
FindR(root->_right, key);
}
else//找到了
{
return root;
}
}
2.二叉搜索树的插入(递归)
//插入 加了&,root是_root的别名,修改root就直接修改到上一层调用,不用找父亲
bool _InsertR(Node*& root, const K& key)
{
if (root == nullptr)//找到位置了
{
root = new Node(key);
return true;
}
if (key < root->_key)//到左子树去找位置
{
_InsertR(root->_left, key);
}
else if (key > root->_key)//到右子树去找位置
{
_InsertR(root->_right, key);
}
else//已存在,无需插入
{
return false;
}
}
3.二叉搜索树的删除(递归)
递归删除:和二叉树的删除(非递归)一样,找到后的删除也有两种方式,递归和非递归
找到后的非递归删除:
//插入 加了&,root是_root的别名,修改root就直接修改到上一层调用,不用找父亲
bool _EraseR(Node*& root, const K& key)
{
if (root == nullptr)//没找到
{
return false;
}
if (key < root->_key)//到左子树去找
{
_EraseR(root->_left, key);
}
else if (key > root->_key)//到右子树去找
{
_EraseR(root->_right, key);
}
else
{
//找到了,root就是要删除的节点
if (root->_left == nullptr)//root左为空
{
Node* del = root;
root = root->_right;
delete del;
}
else if (root->_right == nullptr)//root右为空
{
Node* del = root;
root = root->_left;
delete del;
}
else//root左右都不为空
{
//找到右子树最左节点替换
Node* minParent = root;
Node* minRight = root->_right;
while (minRight->_left)
{
minParent = minRight;
minRight = minRight->_left;
}
//保存替换节点的值
cur->_key = minRight->_key;
//链接
if (minParent->_left == minRight)
{
minParent->_left = minRight->_right;
}
else
{
minParent->_right = minRight->_right;
}
//删除
delete minRight;
}
return true;
}
}
找到后的递归删除:
else//root左右都不为空
{
//找右子树最左节点
Node* minRight = root->_right;
while (minRight->_left)
{
minRight = minRight->_left;
}
//保存右子树最左节点的值
K min = minRight->_key;
//使用递归方法删除右子树最左节点
_Erase(root->_right, min);
}
四、二叉搜索树的默认成员函数
现在还剩下二叉搜索树的构造、拷贝构造、赋值运算符重载、析构函数。
1.构造
public:
//构造函数需要将根初始化为空就行了
BSTree()
:_root(nullptr)
{}
2.拷贝构造
拷贝构造利用递归调用子函数不断拷贝节点:
//拷贝构造
BSTree(const BSTree<K>& t)
{
_root = t.copy(t._root);
}
在子函数处:
Node* _copy(Node* root)
{
if (root == nullptr)//如果根为空,直接返回
{
return;
}
Node* copyNode = new Node(root->_key);//创建根节点
copyNode->_left = _copy(root->_left);//递归拷贝左子树节点
copyNode->_right = _copy(root->_right);//递归拷贝右子树节点
return copyNode;//返回根
}
3.赋值运算符重载
借助拷贝构造用现代写法写:
//赋值运算符重载(现代写法)
BSTree& operator=(const BSTree<K>& t)
{
swap(_root,t._root);
return *this;
}
4.析构
递归调用子函数去析构
//析构
~BSTree()
{
_Destroy(_root);
_root = nullptr;
}
在子函数处:
_Destroy(root)
{
if (root == nullptr)
{
return;
}
_Destroy(root->_left);
_Destroy(root->_right);
delete root;
}
五、K模型和KV模型搜索树
1.K模型搜索树
K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。
比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:
1、以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树
2、在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
2.KV模型搜索树
KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见:
1、比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与其对应的中文<word, chinese>就构成一种键值对;
2、再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出
现次数就是<word, count>就构成一种键值对。
改造二叉搜索树为KV结构的代码
#pragma once
#include<iostream>
#include<string>
using namespace std;
namespace key_value
{
template<class K, class V>
struct BSTreeNode
{
BSTreeNode<K, V>* _left;
BSTreeNode<K, V>* _right;
K _key;
V _value;
// pair<K, V> _kv;
BSTreeNode(const K& key, const V& value)
:_left(nullptr)
, _right(nullptr)
, _key(key)
, _value(value)
{}
};
template<class K, class V>
class BSTree
{
typedef BSTreeNode<K, V> Node;
public:
// logN
bool Insert(const K& key, const V& value)
{
if (_root == nullptr)
{
_root = new Node(key, value);
return true;
}
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
return false;
}
}
cur = new Node(key, value);
if (parent->_key < key)
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
return true;
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
cur = cur->_right;
}
else if (cur->_key > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return cur;
}
bool Erase(const K& key)
{
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (cur->_key < key)
{
parent = cur;
cur = cur->_right;
}
else if (cur->_key > key)
{
parent = cur;
cur = cur->_left;
}
else
{
// 删除
// 左为空,父亲指向我的右
if (cur->_left == nullptr)
{
//if(parent == nullptr)
if (cur == _root)
{
_root = cur->_right;
}
else
{
if (cur == parent->_left)
{
parent->_left = cur->_right;
}
else
{
parent->_right = cur->_right;
}
}
delete cur;
}
else if (cur->_right == nullptr)
{
//if(parent == nullptr)
if (cur == _root)
{
_root = cur->_left;
}
else
{
// 右为空,父亲指向我的左
if (cur == parent->_left)
{
parent->_left = cur->_left;
}
else
{
parent->_right = cur->_left;
}
}
delete cur;
}
else
{
// 左右都不为空,替换法删除
//
// 查找右子树的最左节点替代删除
Node* rightMinParent = cur;
Node* rightMin = cur->_right;
while (rightMin->_left)
{
rightMinParent = rightMin;
rightMin = rightMin->_left;
}
swap(cur->_key, rightMin->_key);
if (rightMinParent->_left == rightMin)
rightMinParent->_left = rightMin->_right;
else
rightMinParent->_right = rightMin->_right;
delete rightMin;
}
return true;
}
}
return false;
}
void InOrder()
{
_InOrder(_root);
cout << endl;
}
private:
void _InOrder(Node* root)
{
if (root == nullptr)
{
return;
}
_InOrder(root->_left);
cout << root->_key << ":" << root->_value << endl;
_InOrder(root->_right);
}
private:
Node* _root = nullptr;
};
六、二叉搜索树性能分析
好了,今天的分享就到这里了
如果对你有帮助,记得点赞👍+关注哦!
我的主页还有其他文章,欢迎学习指点。关注我,让我们一起学习,一起成长吧!