ai获客系统搭建

AI 数字人系统集自然语言处理、计算机图形学、语音合成等多种复杂技术于一体,以下为你详细编写 Python 代码示例,涵盖语音识别、自然语言理解、语音合成、唇形同步模拟及简单的数字人形象展示(通过视频处理)。运行代码前,请确保安装SpeechRecognitiontransformersgTTSmoviepy库,可使用pip install SpeechRecognition transformers gTTS moviepy进行安装。

import speech_recognition as sr​

from transformers import AutoTokenizer, AutoModelForCausalLM​

from gtts import gTTS​

from moviepy.editor import VideoFileClip, AudioFileClip​

import os​

import numpy as np​

import cv2​

# 语音识别函数​

def recognize_speech():​

r = sr.Recognizer()​

with sr.Microphone() as source:​

print("请说话...")​

audio = r.listen(source)​

try:​

text = r.recognize_google(audio)​

print(f"识别到的内容: {text}")​

return text​

except sr.UnknownValueError:​

print("无法识别语音")​

return ""​

except sr.RequestError as e:​

print(f"请求错误; {e}")​

return ""​

# 自然语言理解与回复生成函数​

def generate_response(user_input):​

tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT - medium")​

model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT - medium")​

input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')​

output = model.generate(input_ids=input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)​

response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)​

return response​

# 语音合成并返回音频文件路径​

def text_to_speech(text, lang='zh - CN'):​

tts = gTTS(text=text, lang=lang)​

tts.save("response.mp3")​

return "response.mp3"​

# 简单的唇形同步模拟,根据语音时长调整视频帧​

def lip_sync_video(video_path, audio_path):​

video = VideoFileClip(video_path)​

audio = AudioFileClip(audio_path)​

video_duration = video.duration​

audio_duration = audio.duration​

if video_duration > audio_duration:​

new_fps = video.fps * (audio_duration / video_duration)​

new_video = video.set_fps(new_fps)​

new_video = new_video.set_duration(audio_duration)​

else:​

new_video = video.set_duration(audio_duration)​

new_video.write_videofile("lipsynced_video.mp4", codec='libx264')​

return "lipsynced_video.mp4"​

# 展示数字人视频(这里简单使用OpenCV播放视频)​

def show_digital_human_video(video_path):​

cap = cv2.VideoCapture(video_path)​

while cap.isOpened():​

ret, frame = cap.read()​

if not ret:​

break​

cv2.imshow('Digital Human', frame)​

if cv2.waitKey(25) & 0xFF == ord('q'):​

break​

cap.release()​

cv2.destroyAllWindows()​

# 主函数,整合所有功能​

def main():​

user_input = recognize_speech()​

while user_input.lower() != "退出":​

response = generate_response(user_input)​

print(f"数字人回复: {response}")​

audio_path = text_to_speech(response)​

video_path = "digital_human_base_video.mp4" # 假设已有基础数字人视频​

synced_video_path = lip_sync_video(video_path, audio_path)​

show_digital_human_video(synced_video_path)​

os.remove(audio_path)​

os.remove(synced_video_path)​

user_input = recognize_speech()​

if __name__ == "__main__":​

main()​

这段代码构建了一个基础的 AI 数字人系统框架,能实现从语音输入到数字人回复并展示带唇形同步视频的流程。实际应用中,如需更真实的数字人形象和交互体验,还需借助专业图形引擎(如 Unity、Unreal Engine)以及更复杂的自然语言处理和计算机图形学算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值