AI 数字人系统集自然语言处理、计算机图形学、语音合成等多种复杂技术于一体,以下为你详细编写 Python 代码示例,涵盖语音识别、自然语言理解、语音合成、唇形同步模拟及简单的数字人形象展示(通过视频处理)。运行代码前,请确保安装SpeechRecognition
、transformers
、gTTS
、moviepy
库,可使用pip install SpeechRecognition transformers gTTS moviepy
进行安装。
import speech_recognition as sr
from transformers import AutoTokenizer, AutoModelForCausalLM
from gtts import gTTS
from moviepy.editor import VideoFileClip, AudioFileClip
import os
import numpy as np
import cv2
# 语音识别函数
def recognize_speech():
r = sr.Recognizer()
with sr.Microphone() as source:
print("请说话...")
audio = r.listen(source)
try:
text = r.recognize_google(audio)
print(f"识别到的内容: {text}")
return text
except sr.UnknownValueError:
print("无法识别语音")
return ""
except sr.RequestError as e:
print(f"请求错误; {e}")
return ""
# 自然语言理解与回复生成函数
def generate_response(user_input):
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT - medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT - medium")
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
output = model.generate(input_ids=input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
# 语音合成并返回音频文件路径
def text_to_speech(text, lang='zh - CN'):
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
# 简单的唇形同步模拟,根据语音时长调整视频帧
def lip_sync_video(video_path, audio_path):
video = VideoFileClip(video_path)
audio = AudioFileClip(audio_path)
video_duration = video.duration
audio_duration = audio.duration
if video_duration > audio_duration:
new_fps = video.fps * (audio_duration / video_duration)
new_video = video.set_fps(new_fps)
new_video = new_video.set_duration(audio_duration)
else:
new_video = video.set_duration(audio_duration)
new_video.write_videofile("lipsynced_video.mp4", codec='libx264')
return "lipsynced_video.mp4"
# 展示数字人视频(这里简单使用OpenCV播放视频)
def show_digital_human_video(video_path):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2.imshow('Digital Human', frame)
if cv2.waitKey(25) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
# 主函数,整合所有功能
def main():
user_input = recognize_speech()
while user_input.lower() != "退出":
response = generate_response(user_input)
print(f"数字人回复: {response}")
audio_path = text_to_speech(response)
video_path = "digital_human_base_video.mp4" # 假设已有基础数字人视频
synced_video_path = lip_sync_video(video_path, audio_path)
show_digital_human_video(synced_video_path)
os.remove(audio_path)
os.remove(synced_video_path)
user_input = recognize_speech()
if __name__ == "__main__":
main()
这段代码构建了一个基础的 AI 数字人系统框架,能实现从语音输入到数字人回复并展示带唇形同步视频的流程。实际应用中,如需更真实的数字人形象和交互体验,还需借助专业图形引擎(如 Unity、Unreal Engine)以及更复杂的自然语言处理和计算机图形学算法。