黑板手写文本检测系统源码分享

黑板手写文本检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着信息技术的迅猛发展,人工智能在各个领域的应用逐渐深入,尤其是在图像处理和计算机视觉领域。手写文本识别作为一种重要的研究方向,广泛应用于教育、文档数字化、智能办公等场景。传统的手写文本识别方法往往依赖于复杂的特征提取和分类算法,难以适应多样化的手写风格和环境变化。因此,基于深度学习的目标检测技术逐渐成为研究的热点,其中YOLO(You Only Look Once)系列模型因其高效性和实时性受到广泛关注。

在众多YOLO模型中,YOLOv8作为最新版本,具有更强的特征提取能力和更高的检测精度,适合用于复杂场景下的目标检测任务。然而,针对黑板手写文本的检测,现有的YOLOv8模型仍存在一定的局限性。黑板手写文本通常具有多样的字体、大小和书写风格,同时受环境光照、背景杂乱等因素的影响,导致检测效果不佳。因此,针对这一特定场景,改进YOLOv8模型以提升其在黑板手写文本检测中的性能,具有重要的研究意义。

本研究将构建一个基于改进YOLOv8的黑板手写文本检测系统,利用新收集的包含3600张图像的数据集进行训练和测试。该数据集包含两类目标:手写文本和白板,旨在为模型提供丰富的样本和多样化的场景。通过对数据集的深入分析和处理,我们将对图像进行预处理,以增强模型的鲁棒性。同时,结合YOLOv8的优势,针对黑板手写文本的特征进行特定的网络结构优化和参数调整,以提高检测精度和速度。

本研究的意义不仅在于提升黑板手写文本的检测能力,更在于推动智能教育和数字化教学的发展。通过实现高效的手写文本检测系统,教师可以更方便地将黑板上的内容转化为数字文本,减少信息传递的误差,提高教学效率。此外,该系统还可以为后续的智能批改、知识管理等应用提供基础支持,助力教育信息化的进程。

综上所述,基于改进YOLOv8的黑板手写文本检测系统的研究,既是对现有技术的挑战与创新,也是对教育领域智能化发展的积极探索。通过这一研究,我们期望能够为手写文本识别技术的发展提供新的思路和方法,为实际应用场景中的文本处理提供更为高效、准确的解决方案。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 2
names: [‘Handwritten text’, ‘Whiteboard’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们使用了名为“new Dataset”的数据集,以支持对YOLOv8模型的改进,专注于黑板手写文本的检测系统。该数据集专门设计用于捕捉和识别两种主要类别的内容:手写文本和白板。这一选择不仅反映了实际应用场景的需求,也为模型的训练提供了丰富的多样性和复杂性。

“new Dataset”包含了多样化的图像样本,涵盖了不同书写风格、字迹清晰度和背景环境。这些样本在拍摄时考虑到了多种光照条件和角度变化,确保模型在各种现实场景中都能保持良好的检测性能。手写文本类别的样本主要来源于教育环境,展示了教师在黑板上书写的内容,包括字母、数字以及简单的图形。这些样本的多样性使得模型能够学习到不同书写风格的特征,从而提高其在实际应用中的适应能力。

另一方面,白板类别则主要包括了在不同类型的白板上书写的文本。这些文本可能是学生的笔记、课堂讨论的要点或是其他教育活动中产生的内容。由于白板的光滑表面和反射特性,白板上的书写与黑板有所不同,这为模型提供了更广泛的学习空间。通过将这两种类别结合在一起,数据集不仅增强了模型的泛化能力,还提升了其在多种环境下的实用性。

在数据集的构建过程中,特别注重了标注的准确性和一致性。每一张图像都经过精细的标注,确保手写文本和白板内容的边界框准确无误。这一过程不仅需要专业的标注人员进行细致的工作,还依赖于高效的标注工具,以提高标注的效率和质量。数据集的每个样本都附带了详细的元数据,包括图像的拍摄时间、地点以及相关的背景信息,这为后续的分析和模型评估提供了重要的参考。

为了确保模型的训练效果,数据集还经过了合理的划分,分为训练集、验证集和测试集。这样的划分不仅有助于模型的训练过程,也为后续的性能评估提供了科学依据。训练集用于模型的学习,验证集用于调优超参数,而测试集则用于最终的性能评估,确保模型在未见数据上的表现。

总之,“new Dataset”作为本研究的核心数据来源,凭借其丰富的类别和高质量的样本,为改进YOLOv8的黑板手写文本检测系统提供了坚实的基础。通过对该数据集的深入分析和应用,我们期望能够显著提升模型在实际应用中的检测精度和鲁棒性,为教育领域的智能化发展贡献一份力量。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLO(You Only Look Once)系列算法自其首次提出以来,便以其卓越的实时目标检测能力而广受关注。YOLOv8作为该系列的最新版本,进一步推动了目标检测技术的发展,其设计理念和结构优化使得该算法在检测精度和速度上均表现出色。YOLOv8的架构主要由四个核心部分组成:输入模块、Backbone骨干网络、Neck特征融合网络和Head检测模块。这些模块的协同工作使得YOLOv8能够在复杂的视觉任务中实现高效的目标检测。

在输入模块中,YOLOv8首先对输入图像进行预处理,包括调整图像比例、进行Mosaic增强以及计算瞄点。这些预处理步骤旨在提升模型对不同输入图像的适应能力,从而增强后续特征提取的有效性。Mosaic增强技术通过将多张图像拼接在一起,增加了训练样本的多样性,帮助模型更好地学习到不同场景下的特征。

YOLOv8的Backbone部分沿用了DarkNet结构,但在此基础上进行了重要的改进。与之前版本相比,YOLOv8引入了C2f模块替代了C3模块,优化了特征提取的效率。C2f模块通过引入跨级连接的方式,促进了梯度流动,确保了信息在网络中的有效传递。此外,YOLOv8针对不同尺度的模型调整了通道数,以获取更丰富的特征信息。这种设计不仅保留了轻量级特性,还增强了模型对多尺度目标的检测能力。

在特征融合方面,YOLOv8的Neck模块采用了“双塔结构”,结合了特征金字塔和路径聚合网络。这种设计促进了语义特征与定位特征之间的有效转移,使得网络能够更好地融合不同层次的特征信息,从而提高了对不同尺度目标的检测性能。特征金字塔网络(FPN)在此发挥了重要作用,它通过自上而下的特征融合,使得高层语义信息与低层细节信息得以结合,进一步提升了检测的准确性。

YOLOv8的Head模块则包含了三个解耦的Detect检测器,采用了回归分支和预测分支的分离结构。这种解耦设计不仅加速了模型的收敛速度,还提高了目标检测的精度。通过将分类和回归任务分开处理,YOLOv8能够更专注于每个任务的优化,从而在复杂场景中实现更高的检测性能。

在损失函数的设计上,YOLOv8引入了新的损失策略,采用变焦损失计算分类损失,并结合数据平均保真度损失和完美交并比损失来计算边界框损失。这种新的损失策略使得YOLOv8在处理目标检测任务时,能够更加准确地优化模型参数,从而提高了目标检测的整体性能。通过精确的损失计算,YOLOv8能够更好地适应不同的目标特征,提升了模型的泛化能力。

总的来说,YOLOv8在设计上充分考虑了目标检测的实际需求,通过一系列的结构优化和损失函数改进,使得该算法在保持高效性的同时,显著提升了检测精度。这些创新不仅增强了YOLOv8在多种应用场景下的适用性,也为后续的目标检测研究提供了新的思路和方向。通过对YOLOv8的深入理解和应用,研究者们能够在更广泛的领域中探索目标检测技术的潜力,推动智能视觉系统的发展。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\callbacks_init_.py

下面是对给定代码的核心部分进行分析和详细注释的结果:

# 导入Ultralytics YOLO库中的基础模块
from .base import add_integration_callbacks, default_callbacks, get_default_callbacks

# 定义当前模块的公开接口,包含三个函数
__all__ = 'add_integration_callbacks', 'default_callbacks', 'get_default_callbacks'

代码分析与注释:

  1. 模块导入

    from .base import add_integration_callbacks, default_callbacks, get_default_callbacks
    
    • 这一行代码从当前包的 base 模块中导入了三个核心功能:
      • add_integration_callbacks: 可能用于添加集成回调的函数。
      • default_callbacks: 可能是一个默认回调的集合。
      • get_default_callbacks: 可能用于获取默认回调的函数。
  2. 公开接口定义

    __all__ = 'add_integration_callbacks', 'default_callbacks', 'get_default_callbacks'
    
    • __all__ 是一个特殊变量,用于定义当使用 from module import * 时,哪些名称是可以被导入的。
    • 在这里,定义了三个函数名称,使得它们可以被外部模块访问,从而提高了模块的可用性和清晰度。

总结:

该代码片段主要负责从基础模块中导入一些核心功能,并定义了模块的公开接口,以便其他模块可以方便地使用这些功能。

这个文件是Ultralytics YOLO项目中的一个初始化文件,位于utils/callbacks目录下。文件的开头包含了一条版权声明,表明该代码遵循AGPL-3.0许可证,这是一种开源许可证,允许用户自由使用、修改和分发代码,但要求在分发时保持相同的许可证。

在代码的主体部分,文件从base模块中导入了三个函数:add_integration_callbacksdefault_callbacksget_default_callbacks。这些函数可能与回调机制有关,回调通常用于在特定事件发生时执行某些操作,比如在训练过程中记录指标、调整学习率等。

最后,__all__变量被定义为一个元组,包含了上述导入的三个函数名。这意味着当使用from module import *语句导入该模块时,只会导入__all__中列出的名称,从而控制模块的公共接口,避免不必要的名称冲突。

总的来说,这个文件的主要作用是作为一个模块的入口,整合并暴露与回调相关的功能,以便其他模块或文件可以方便地使用这些功能。

11.2 code\ultralytics\models\sam\modules\encoders.py

以下是经过简化和注释的核心代码部分,主要包括 ImageEncoderViTPatchEmbed 类。这些类是实现视觉变换器(ViT)架构的关键部分,用于将图像编码为紧凑的潜在空间。

import torch
import torch.nn as nn
from typing import Optional, Tuple

class PatchEmbed(nn.Module):
    """图像到补丁嵌入的模块。"""

    def __init__(self, kernel_size: Tuple[int, int] = (16, 16), in_chans: int = 3, embed_dim: int = 768) -> None:
        """
        初始化 PatchEmbed 模块。

        Args:
            kernel_size (Tuple): 卷积核的大小。
            in_chans (int): 输入图像的通道数。
            embed_dim (int): 补丁嵌入的维度。
        """
        super().__init__()
        # 使用卷积层将图像转换为补丁嵌入
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """通过卷积计算补丁嵌入,并转置结果张量。"""
        return self.proj(x).permute(0, 2, 3, 1)  # 将形状从 [B, C, H, W] 转换为 [B, H, W, C]


class ImageEncoderViT(nn.Module):
    """
    使用视觉变换器(ViT)架构的图像编码器,将图像编码为紧凑的潜在空间。
    """

    def __init__(self, img_size: int = 1024, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, depth: int = 12) -> None:
        """
        初始化图像编码器。

        Args:
            img_size (int): 输入图像的大小。
            patch_size (int): 补丁的大小。
            in_chans (int): 输入图像的通道数。
            embed_dim (int): 补丁嵌入的维度。
            depth (int): ViT 的深度,即变换器块的数量。
        """
        super().__init__()
        self.img_size = img_size

        # 初始化补丁嵌入模块
        self.patch_embed = PatchEmbed(kernel_size=(patch_size, patch_size), in_chans=in_chans, embed_dim=embed_dim)

        # 初始化变换器块
        self.blocks = nn.ModuleList([Block(embed_dim) for _ in range(depth)])  # 这里 Block 类应当定义为变换器块

        # 颈部模块,用于进一步处理输出
        self.neck = nn.Sequential(
            nn.Conv2d(embed_dim, 256, kernel_size=1, bias=False),  # 将嵌入维度转换为输出通道
            nn.LayerNorm(256),  # 归一化层
            nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=False),  # 进一步卷积处理
            nn.LayerNorm(256),  # 归一化层
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """处理输入,通过补丁嵌入、变换器块和颈部模块。"""
        x = self.patch_embed(x)  # 通过补丁嵌入处理输入
        for blk in self.blocks:  # 逐个通过变换器块
            x = blk(x)
        return self.neck(x.permute(0, 3, 1, 2))  # 调整维度并通过颈部模块

代码注释说明

  1. PatchEmbed 类:

    • 该类负责将输入图像分割成补丁并进行嵌入。使用卷积层来实现这一点,卷积的输出被转置以适应后续处理。
  2. ImageEncoderViT 类:

    • 该类实现了一个图像编码器,使用 ViT 架构将图像编码为潜在空间。
    • 初始化时设置图像大小、补丁大小、输入通道数、嵌入维度和变换器块的深度。
    • forward 方法处理输入图像,通过补丁嵌入、变换器块和颈部模块生成最终的编码表示。

请注意,Block 类和其他相关的辅助函数(如 Attentionwindow_partition)在此示例中未被定义,但它们在完整实现中是必不可少的。

这个程序文件定义了一个用于图像编码的模块,主要基于视觉变换器(Vision Transformer, ViT)架构。文件中包含多个类,每个类负责不同的功能。

首先,ImageEncoderViT类是图像编码器的核心部分。它的构造函数接受多个参数,包括输入图像的大小、补丁大小、输入通道数、嵌入维度、深度、注意力头数等。该类的主要功能是将输入图像分割成多个补丁,并通过一系列的变换块处理这些补丁。编码后的补丁随后通过一个“颈部”模块进一步处理,以生成最终的编码表示。

__init__方法中,首先初始化了图像大小和补丁嵌入模块。接着,如果使用绝对位置嵌入,则初始化相应的参数。然后,构建了一系列的变换块,这些块通过Block类实现。最后,定义了一个颈部模块,该模块包括多个卷积层和层归一化,用于进一步处理输出。

forward方法定义了前向传播的过程,首先通过补丁嵌入模块处理输入图像,然后如果存在位置嵌入,则将其添加到补丁嵌入中。接着,依次通过所有的变换块,最后将结果传递给颈部模块以获得最终输出。

接下来是PromptEncoder类,它用于编码不同类型的提示,包括点、框和掩码,以便输入到掩码解码器中。该类生成稀疏和密集的嵌入表示。构造函数中初始化了嵌入维度、输入图像大小、图像嵌入大小、掩码输入通道数等参数,并定义了相应的嵌入模块和下采样网络。

forward方法处理不同类型的提示,返回稀疏和密集的嵌入。它首先获取批次大小,然后根据输入的点、框和掩码进行相应的嵌入操作。

PositionEmbeddingRandom类实现了基于随机空间频率的位置信息编码。它的构造函数初始化了位置编码矩阵,并提供了生成特定大小网格的前向方法。

Block类实现了变换块,支持窗口注意力和残差传播。它的构造函数定义了归一化层、注意力模块和多层感知机(MLP)模块。

Attention类实现了多头注意力机制,支持相对位置嵌入。它的前向方法计算注意力分数并生成输出。

此外,文件中还定义了一些辅助函数,如window_partitionwindow_unpartition,用于将输入张量划分为窗口和反向合并窗口。

最后,PatchEmbed类负责将图像转换为补丁嵌入。它使用卷积层来实现这一过程,并在前向传播中返回处理后的张量。

整体来看,这个文件实现了一个强大的图像编码器,利用了现代深度学习中的变换器架构,适用于各种计算机视觉任务。

11.3 ui.py

以下是代码中最核心的部分,并附上详细的中文注释:

import sys
import subprocess

def run_script(script_path):
    """
    使用当前 Python 环境运行指定的脚本。

    Args:
        script_path (str): 要运行的脚本路径

    Returns:
        None
    """
    # 获取当前 Python 解释器的路径
    python_path = sys.executable

    # 构建运行命令,使用 streamlit 运行指定的脚本
    command = f'"{python_path}" -m streamlit run "{script_path}"'

    # 执行命令
    result = subprocess.run(command, shell=True)
    # 检查命令执行的返回码,0 表示成功,非0表示出错
    if result.returncode != 0:
        print("脚本运行出错。")

# 实例化并运行应用
if __name__ == "__main__":
    # 指定要运行的脚本路径
    script_path = "web.py"  # 这里可以替换为实际的脚本路径

    # 调用函数运行脚本
    run_script(script_path)

代码说明:

  1. 导入模块

    • sys:用于访问与 Python 解释器紧密相关的变量和函数。
    • subprocess:用于创建新进程、连接到它们的输入/输出/错误管道,并获得返回码。
  2. run_script 函数

    • 该函数接收一个脚本路径作为参数,并使用当前 Python 环境运行该脚本。
    • sys.executable 获取当前 Python 解释器的路径,以确保使用正确的 Python 版本。
    • 使用 subprocess.run 执行构建的命令,shell=True 允许在 shell 中执行命令。
    • 检查命令的返回码,如果不为 0,则表示脚本运行出错,并打印错误信息。
  3. 主程序块

    • 通过 if __name__ == "__main__": 确保该代码块仅在脚本直接运行时执行。
    • 指定要运行的脚本路径(这里是 web.py),并调用 run_script 函数来执行该脚本。

这个程序文件的主要功能是通过当前的 Python 环境来运行一个指定的脚本,具体是一个名为 web.py 的文件。程序首先导入了必要的模块,包括 sysossubprocess,这些模块分别用于访问系统参数、操作系统功能和执行外部命令。

run_script 函数中,首先获取当前 Python 解释器的路径,这通过 sys.executable 实现。接着,构建一个命令字符串,该命令使用 streamlit 模块来运行指定的脚本。streamlit 是一个用于构建数据应用的流行库,命令的格式是 python -m streamlit run script_path

随后,使用 subprocess.run 方法执行构建好的命令。这个方法会在一个新的子进程中运行命令,并等待其完成。如果命令执行的返回码不为零,表示脚本运行出错,程序会打印出错误信息。

在文件的最后部分,使用 if __name__ == "__main__": 语句来确保只有在直接运行该文件时才会执行下面的代码。这部分代码指定了要运行的脚本路径,调用 abs_path 函数获取 web.py 的绝对路径,并最终调用 run_script 函数来执行该脚本。

总的来说,这个程序的作用是为用户提供一个简单的方式来运行一个基于 Streamlit 的 Python 脚本,并在出现错误时给出提示。

11.4 code\ultralytics\trackers\track.py

以下是经过简化和注释的核心代码部分:

# 导入必要的库
from functools import partial
from pathlib import Path
import torch
from ultralytics.utils import IterableSimpleNamespace, yaml_load
from ultralytics.utils.checks import check_yaml
from .bot_sort import BOTSORT
from .byte_tracker import BYTETracker

# 跟踪器类型与对应类的映射
TRACKER_MAP = {"bytetrack": BYTETracker, "botsort": BOTSORT}

def on_predict_start(predictor: object, persist: bool = False) -> None:
    """
    在预测开始时初始化对象跟踪器。

    参数:
        predictor (object): 用于初始化跟踪器的预测器对象。
        persist (bool, optional): 如果跟踪器已存在,是否保持其状态。默认为 False。

    异常:
        AssertionError: 如果 tracker_type 不是 'bytetrack' 或 'botsort'。
    """
    # 检查任务类型是否为 OBB,若是则抛出异常
    if predictor.args.task == "obb":
        raise NotImplementedError("ERROR ❌ OBB 任务不支持跟踪模式!")
    
    # 如果预测器已有跟踪器且需要保持状态,则直接返回
    if hasattr(predictor, "trackers") and persist:
        return

    # 加载跟踪器配置
    tracker = check_yaml(predictor.args.tracker)
    cfg = IterableSimpleNamespace(**yaml_load(tracker))

    # 检查跟踪器类型是否合法
    if cfg.tracker_type not in ["bytetrack", "botsort"]:
        raise AssertionError(f"仅支持 'bytetrack' 和 'botsort',但得到了 '{cfg.tracker_type}'")

    # 初始化跟踪器
    trackers = []
    for _ in range(predictor.dataset.bs):  # 对于每个批次
        tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)  # 创建跟踪器实例
        trackers.append(tracker)  # 将跟踪器添加到列表中
    predictor.trackers = trackers  # 将跟踪器列表赋值给预测器

def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
    """
    后处理检测到的框并更新对象跟踪。

    参数:
        predictor (object): 包含预测结果的预测器对象。
        persist (bool, optional): 如果跟踪器已存在,是否保持其状态。默认为 False。
    """
    bs = predictor.dataset.bs  # 批次大小
    path, im0s = predictor.batch[:2]  # 获取路径和图像

    for i in range(bs):  # 遍历每个批次
        # 如果不是持久化且视频路径不同,则重置跟踪器
        if not persist and predictor.vid_path[i] != str(predictor.save_dir / Path(path[i]).name):
            predictor.trackers[i].reset()

        det = predictor.results[i].boxes.cpu().numpy()  # 获取检测结果
        if len(det) == 0:  # 如果没有检测到物体,跳过
            continue
        
        # 更新跟踪器并获取跟踪结果
        tracks = predictor.trackers[i].update(det, im0s[i])
        if len(tracks) == 0:  # 如果没有跟踪到物体,跳过
            continue
        
        idx = tracks[:, -1].astype(int)  # 获取跟踪索引
        predictor.results[i] = predictor.results[i][idx]  # 更新结果
        predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1]))  # 更新框信息

def register_tracker(model: object, persist: bool) -> None:
    """
    为模型注册跟踪回调,以便在预测期间进行对象跟踪。

    参数:
        model (object): 要注册跟踪回调的模型对象。
        persist (bool): 如果跟踪器已存在,是否保持其状态。
    """
    # 注册预测开始和后处理结束的回调函数
    model.add_callback("on_predict_start", partial(on_predict_start, persist=persist))
    model.add_callback("on_predict_postprocess_end", partial(on_predict_postprocess_end, persist=persist))

代码说明:

  1. 导入模块:导入必要的库和模块,包括跟踪器的实现。
  2. TRACKER_MAP:定义一个字典,将跟踪器类型映射到具体的跟踪器类。
  3. on_predict_start:在预测开始时初始化跟踪器,检查任务类型和跟踪器配置,创建跟踪器实例并保存到预测器中。
  4. on_predict_postprocess_end:在预测后处理阶段,更新检测结果并进行对象跟踪,处理每个批次的检测框和跟踪器。
  5. register_tracker:为模型注册跟踪的回调函数,以便在预测过程中自动调用跟踪器的初始化和更新功能。

这个程序文件主要用于实现目标检测中的对象跟踪功能,尤其是与Ultralytics YOLO模型相关的跟踪器。文件中包含了一些重要的函数和类,具体功能如下:

首先,文件导入了一些必要的库和模块,包括torch和一些Ultralytics的工具函数。接着,定义了一个跟踪器类型与相应跟踪器类的映射字典TRACKER_MAP,其中包含了BYTETrackerBOTSORT两种跟踪器。

on_predict_start函数中,程序初始化了用于对象跟踪的跟踪器。该函数接收一个预测器对象和一个可选的布尔参数persist,用于指示是否在跟踪器已存在的情况下保持其状态。函数首先检查预测任务类型,如果是“obb”则抛出未实现的异常。接着,函数检查预测器是否已经有跟踪器,如果persist为真,则直接返回。然后,函数加载跟踪器的配置文件,并确保所使用的跟踪器类型是支持的(即“bytetrack”或“botsort”)。最后,根据批次大小创建相应数量的跟踪器实例,并将其存储在预测器的trackers属性中。

on_predict_postprocess_end函数则用于在检测框后处理阶段更新对象跟踪。该函数同样接收预测器对象和persist参数。函数首先获取批次大小和图像数据,然后遍历每个视频帧。如果persist为假且当前视频路径与保存路径不同,则重置对应的跟踪器。接着,函数获取检测结果,如果没有检测到物体则跳过处理。对于检测到的物体,调用对应的跟踪器进行更新,并根据跟踪结果更新预测器的结果。

最后,register_tracker函数用于将跟踪回调注册到模型中,以便在预测过程中调用相应的跟踪功能。该函数接收模型对象和persist参数,并通过add_callback方法将on_predict_starton_predict_postprocess_end函数注册为回调函数。

整体而言,这个文件的主要功能是为Ultralytics YOLO模型提供对象跟踪的支持,通过初始化和更新跟踪器来实现对检测到的目标进行持续跟踪。

11.5 train.py

以下是经过简化和注释的核心代码部分:

import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    DetectionTrainer类用于基于YOLO模型进行目标检测的训练。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建YOLO数据集。

        参数:
            img_path (str): 包含图像的文件夹路径。
            mode (str): 模式,可以是'train'或'val',用于自定义不同的增强方式。
            batch (int, optional): 批次大小,适用于'rect'模式。默认为None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构造并返回数据加载器。"""
        assert mode in ["train", "val"]
        with torch_distributed_zero_first(rank):  # 在分布式环境中,确保数据集只初始化一次
            dataset = self.build_dataset(dataset_path, mode, batch_size)
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 归一化到[0, 1]
        if self.args.multi_scale:  # 如果启用多尺度训练
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择一个尺寸
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值
            batch["img"] = imgs
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回YOLO目标检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
        if weights:
            model.load(weights)  # 加载预训练权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制训练样本及其标注。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

代码说明:

  1. DetectionTrainer类:继承自BaseTrainer,用于实现YOLO模型的训练功能。
  2. build_dataset方法:根据给定的图像路径和模式(训练或验证)构建YOLO数据集。
  3. get_dataloader方法:构造数据加载器,支持分布式训练,设置数据打乱和工作线程数。
  4. preprocess_batch方法:对输入的图像批次进行预处理,包括归一化和可选的多尺度调整。
  5. get_model方法:返回一个YOLO目标检测模型,并可选择加载预训练权重。
  6. plot_training_samples方法:绘制训练样本及其对应的标注,便于可视化训练过程中的数据。

这个程序文件 train.py 是一个用于训练目标检测模型的脚本,基于 Ultralytics 的 YOLO(You Only Look Once)框架。该文件主要定义了一个名为 DetectionTrainer 的类,继承自 BaseTrainer,用于处理目标检测任务的训练过程。

在文件的开头,导入了一些必要的库和模块,包括数学运算、随机数生成、深度学习相关的 PyTorch 模块,以及 Ultralytics 提供的各种工具和功能。这些导入的模块为后续的训练过程提供了基础功能。

DetectionTrainer 类中包含多个方法,首先是 build_dataset 方法,它负责构建 YOLO 数据集。这个方法接收图像路径、模式(训练或验证)和批量大小作为参数,并根据这些参数调用 build_yolo_dataset 函数来创建数据集。

接下来是 get_dataloader 方法,它构建并返回数据加载器。该方法会根据模式(训练或验证)来设置数据集的加载方式,并处理数据加载的相关参数,如批量大小和工作线程数。

preprocess_batch 方法用于对输入的图像批次进行预处理,包括将图像缩放到合适的大小并转换为浮点数格式。这个过程还包括对图像进行多尺度处理,以增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称等信息。这些信息是从数据集中提取的,并附加到模型上,以便模型在训练过程中能够正确处理不同的类别。

get_model 方法用于返回一个 YOLO 检测模型的实例。如果提供了权重参数,该方法还会加载相应的权重。

get_validator 方法返回一个用于模型验证的 DetectionValidator 实例,该实例负责在训练过程中评估模型的性能。

label_loss_items 方法用于返回带有标签的训练损失项字典,便于在训练过程中监控模型的损失情况。

progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其注释,以便可视化训练数据的情况。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和创建带标签的训练图,以便分析模型的训练效果。

总体而言,这个文件实现了 YOLO 模型的训练流程,包括数据集构建、数据加载、模型初始化、训练过程监控和结果可视化等功能,是目标检测任务中不可或缺的一部分。

11.6 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\utils\patches.py

以下是代码中最核心的部分,并附上详细的中文注释:

import cv2
import numpy as np
import torch

def imread(filename: str, flags: int = cv2.IMREAD_COLOR):
    """
    从文件中读取图像。

    参数:
        filename (str): 要读取的文件路径。
        flags (int, optional): 可以取 cv2.IMREAD_* 的值。默认为 cv2.IMREAD_COLOR。

    返回:
        (np.ndarray): 读取的图像。
    """
    # 使用 cv2.imdecode 读取图像,np.fromfile 以二进制方式读取文件
    return cv2.imdecode(np.fromfile(filename, np.uint8), flags)


def imwrite(filename: str, img: np.ndarray, params=None):
    """
    将图像写入文件。

    参数:
        filename (str): 要写入的文件路径。
        img (np.ndarray): 要写入的图像。
        params (list of ints, optional): 额外参数。请参见 OpenCV 文档。

    返回:
        (bool): 如果文件写入成功则返回 True,否则返回 False。
    """
    try:
        # 使用 cv2.imencode 将图像编码为指定格式,并保存到文件
        cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename)
        return True
    except Exception:
        return False


def imshow(winname: str, mat: np.ndarray):
    """
    在指定窗口中显示图像。

    参数:
        winname (str): 窗口名称。
        mat (np.ndarray): 要显示的图像。
    """
    # 使用 OpenCV 的 imshow 函数显示图像,窗口名称进行编码以避免字符编码问题
    cv2.imshow(winname.encode('unicode_escape').decode(), mat)


def torch_save(*args, **kwargs):
    """
    使用 dill(如果存在)序列化 lambda 函数,pickle 无法处理的情况。

    参数:
        *args (tuple): 传递给 torch.save 的位置参数。
        **kwargs (dict): 传递给 torch.save 的关键字参数。
    """
    try:
        import dill as pickle  # 尝试导入 dill 模块
    except ImportError:
        import pickle  # 如果没有 dill,则使用 pickle

    # 如果没有指定 pickle_module,则使用导入的 pickle
    if 'pickle_module' not in kwargs:
        kwargs['pickle_module'] = pickle
    return torch.save(*args, **kwargs)  # 调用原始的 torch.save 函数

代码核心部分解释:

  1. imread: 读取图像文件并返回为 NumPy 数组,支持多种图像格式。
  2. imwrite: 将 NumPy 数组(图像)写入指定文件,支持指定图像格式。
  3. imshow: 在窗口中显示图像,处理了字符编码问题。
  4. torch_save: 扩展了 PyTorch 的保存功能,支持使用 dill 模块序列化 lambda 函数。

这个程序文件是一个用于扩展和更新现有功能的猴子补丁(monkey patches),主要针对YOLO(You Only Look Once)算法的实现。文件中包含了一些图像处理和PyTorch相关的功能增强。

首先,文件导入了必要的库,包括Path(用于处理文件路径)、cv2(OpenCV库,用于图像处理)、numpy(用于数值计算)和torch(PyTorch库,用于深度学习)。接下来,文件定义了一些函数来替代或增强OpenCV和PyTorch的原有功能。

在OpenCV相关的部分,首先定义了一个imshow函数的别名_imshow,以避免递归错误。接着,定义了imread函数,该函数用于从文件中读取图像。它接受文件名和读取标志作为参数,使用cv2.imdecode函数读取图像,并返回一个NumPy数组表示的图像数据。

接下来是imwrite函数,用于将图像写入文件。该函数接受文件名、图像数据和可选的参数列表。它使用cv2.imencode将图像编码为指定格式,并通过tofile方法将其写入文件。如果写入成功,返回True,否则返回False

然后是imshow函数,它用于在指定窗口中显示图像。该函数接受窗口名称和图像数据作为参数,并调用之前定义的_imshow函数来实际显示图像。

在PyTorch相关的部分,首先定义了一个torch_save函数的别名_torch_save,同样是为了避免递归错误。torch_save函数用于保存模型或数据,增强了对序列化的支持,特别是对于lambda函数的处理。它尝试导入dill库(如果存在),否则使用标准的pickle库进行序列化。如果没有在关键字参数中指定pickle_module,则将其设置为导入的pickle模块。最后,调用原始的torch.save函数来执行保存操作。

总体来说,这个文件通过定义一些自定义的图像读取、写入和显示函数,以及增强PyTorch的保存功能,来提升YOLO算法在图像处理和模型保存方面的灵活性和功能性。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLOv8的目标检测和图像处理框架,包含了多个模块和工具,用于训练、推理、跟踪和图像处理。整体架构分为几个主要部分:

  1. 模型定义与编码:实现了YOLOv8及其变种的模型结构,包括编码器和解码器,用于特征提取和目标检测。
  2. 训练与验证:提供了训练模型的功能,包括数据加载、损失计算、模型评估等。
  3. 回调机制:通过回调函数来增强训练过程中的灵活性和可扩展性。
  4. 图像处理:实现了图像的读取、显示和保存功能,增强了对图像数据的处理能力。
  5. 目标跟踪:提供了对象跟踪的功能,支持在视频流中对检测到的目标进行持续跟踪。
  6. 用户界面:提供了一个简单的用户界面,允许用户方便地运行和测试模型。

文件功能整理表

文件路径功能描述
ultralytics/utils/callbacks/__init__.py定义和注册训练过程中的回调函数,用于监控和调整训练过程。
ultralytics/models/sam/modules/encoders.py实现图像编码器,基于视觉变换器架构,处理输入图像并生成特征。
ui.py提供一个用户界面,允许用户运行指定的Streamlit脚本。
ultralytics/trackers/track.py实现目标检测中的对象跟踪功能,初始化和更新跟踪器。
train.py定义目标检测模型的训练流程,包括数据集构建和模型评估。
ultralytics/utils/patches.py提供图像读取、写入和显示的增强功能,扩展PyTorch的保存功能。
ultralytics/utils/ops.py提供各种操作的工具函数,可能包括图像处理和模型操作。
ultralytics/models/yolo/classify/val.py实现YOLO分类模型的验证功能,评估模型在分类任务上的表现。
ultralytics/models/sam/predict.py实现SAM(Segment Anything Model)模型的预测功能。
ultralytics/utils/files.py提供文件操作的工具函数,如文件读取、写入和路径处理。
ultralytics/data/loaders.py实现数据加载器,负责从数据集中加载图像和标签。
ultralytics/models/sam/model.py定义SAM模型的结构和功能,处理图像分割任务。
ultralytics/models/yolo/pose/val.py实现YOLO姿态估计模型的验证功能,评估模型在姿态估计任务上的表现。

这个表格总结了每个文件的主要功能,帮助理解整个项目的结构和功能模块。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/new-Dataset596

参考原始博客2: https://github.com/VisionMillionDataStudio/new-Dataset596

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值