机器学习之极大似然估计

极大似然估计

基本思想

极大似然估计是在总体类型已知的条件下使用的一种参数估计方法。
首先是德国数学家高斯在1821年提出的,然而这个方法常归功于英国统计学家费歇。
极大似然法的基本思想通过一个例子说明:
一个猎人和一个二逼外出打猎,一只野兔从前方窜过,一声枪响,野兔应声倒下。如果要你推测,是谁打中的?你会如何想?
选择一个参数使得实验结果有最大的概率
(1)若总体X属离散型,其分布律 P{X=x}=p(x;θ),θΘ 的形式是已知, θ 为待估参数, Θ θ 可能取值的范围。
X1,X2,,Xn 是来自 X 的样本;则X1,X2,,Xn的联合分布律:

i=1np(xi;θ)

又设 x1,x2,,xn X1,X2,,Xn 的一个样本值;易知样本 X1,X2,,Xn x1,x2,,xn 得概率,为事件 {X1=x1,X2=x2,,Xn=xn} 发生的概率为
L(θ)=L(x1,x2,,xn;θ)=i=1np(xi;θ)θΘ

它是 θ 的函数, L(θ) 称为样本的似然函数
由最大似然估计法:固定 x1,x2,,xn ;挑选使得概率 L(θ)=L(x1,x2,,xn;θ) 达到最大的参数
L(x1,x2,,xn;θ)=max L(x1,x2,,xn;θ)

θ x1,x2,,xn 有关,记 θ(x1,x2,,xn) ;称其为参数 θ 的极大似然估计值。
θ(X1,X2,,Xn) 称为参数 θ 的极大似然估计量

求参数的最大似然函数的步骤:
1.写出似然函数

L(θ1,(θ1,,θk)=L(x1,x2,,xn;θ1,,θk)=i=1nf(xi;θ1,,θk)

2.取对数
3.将对数似然函数对各参数求偏导数并令其为零,得对数似然方程组。若总体分布中只有一个未知参数,则为一个方程,称对数似然方程
4.从方程组中解出 θ1,,θk ,并记为
$$$$

示例

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值