clc,clear all;
close all;
%%
% %回归分析
% %利用regress函数进行一元线性回归分析
% x=[1617 1540 1700 1425 1574 1902 1687 1499 1567 1688];
% y=[423 365 509 290 387 421 479 307 392 459];
% x=[ones(size(x,2),1),x'];
% [b,int,rint,stats]=regress(y',x)%一元线性回归分析
%%
% %回归预测
% %y=a+bx1+cx2+dx3
% x=[76.3 30.6 21.1 1090.5;78.2 31.7 20.4 1123; 80.7 28.8 22.8 1189.7;
% 77 31.6 20.9 1003.2;79.8 26.7 23.7 1287.1;82.1 23.5 21.5 1023;
% 98.7 26.7 21.3 1191;66.4 26.8 21 1075.4;75 23.6 22.8 1231;
% 149 50.22 22.4 2317;112.5 46.3 23.1 2031.2;126.7 62.5 28.6 2169.4];
% subplot(2,2,1);
% plot(x(:,1),x(:,4),'r+');
% title('销售额与看库存资金额关系');
%
% subplot(2,2,2);
% plot(x(:,2),x(:,4),'go');
% title('销售额与广告投入关系');
%
% subplot(2,1,2);
% plot(x(:,3),x(:,4),'go');
% title('销售额与员工薪酬关系');
%
% %作多元回归
% x=[ones(12,1) x(:,1:3)];
% [b,bint,r,rint,stats]=regress(x(:,4),x);
% b, bint,stats,
%
% %预测
% x1=[1 145 44 26];
% y1=x1*b
%%
% % regstats作多重线性回归
% x=[76.3 30.6 21.1 1090.5;78.2 31.7 20.4 1123; 80.7 28.8 22.8 1189.7;
% 77 31.6 20.9 1003.2;79.8 26.7 23.7 1287.1;82.1 23.5 21.5 1023;
% 98.7 26.7 21.3 1191;66.4 26.8 21 1075.4;75 23.6 22.8 1231;
% 149 50.22 22.4 2317;112.5 46.3 23.1 2031.2;126.7 62.5 28.6 2169.4];
% x1=x(:,1:3)
% y1=x(:,4);
% s=regstats(y1,x1)%回归诊断
% s.beta %求回归参数,含常数项
%%
% % robustfit函数采用加权最下二乘法估计线性回归参数,所建模型受异常数据点的影响较小
% %利用robustfit函数对线性模型y=10-2*x进行多重稳健回归分析
% x=(1:10)';
% y=10-2*x+randn(10,1);
% y(10)=0;
% %同时使用普通最小二乘和稳健回归估计直线拟合
% [bls,stats1]=regress(y,[ones(10,1) x]);
% [brob,stats2]=robustfit(x,y);
% %绘制散点图
% scatter(x,y,'filled');
% grid on;
% hold on;
% plot(x,bls(1)+bls(2)*x,'r','LineWidth',2);
% plot(x,brob(1)+brob(2)*x,'y','LineWidth',2);
% legend('原始数据','普通最小二乘','稳健回归');
%%
% %单因素方差分析
% % 调用anoval函数对数据进行单因素方差分析
% x=[62 75 62 79 80;67 85 69 64 70;45 79 55 69 79;52 76 65 70 76];
% group={'方案1','方案2','方案3','方案4','方案5',};
% [p,a,s]=anova1(x,group)%单因素方差分析
%%
% %双因素方差分析
% x=[30 36 35.5 38.5 ;33.5 36.5 38 39.5;36 37.5 39.5 43];
% [p,s,state]=anova2(x) %双因素方差分析
%%
%异常数据处理
c=[nan;ones(100,1);inf;100]; %含有nan,inf,以及一个不正常的大数100
mean(c),trimmean(c,5) %trimmean忽略上下各2.5%的值
c=trim(c) %坏数据已被清除
单因素、双因素方差分析、误差处理
最新推荐文章于 2024-09-02 01:00:00 发布