【word 2016】保存太慢解决办法

Office 2013已经发布了好久了,这几天趁着重装系统,装上了繁体中文2013专业版,是正版的哦,单位买的批量授权版,和以往的版本一样,可以装上语言包变成简体版的(要额外付费)。体验很满意,界面与2010版基本一致,不会不适应。Office 2013版的文件格式和2010版一致,但是Visio有变化,新的文件格式不再是vsd后缀文件名,而是vsdx。试验了一下,vsdx格式的流程图copy到Word 2010的中能够显示,但是不能被编辑。Visio 2010不能打开vsdx文件。

 

  使用中遇到一件怪异的事,Word 2013保存大文件特别慢,200页左右的文档,保存一次经常要二三十秒,我喜欢时不时的就来一下Ctrl+S,但这个保存速度真是要了命了。一种办法就是编辑的时候不保存,编辑完毕直接关闭Word,在提示是否保存时选择保存即可,速度很快,可这也不是办法啊。卸载,换装了Office 2013简体专业增强VOL版,问题依旧。

  在网上找了半天也没找到解决办法。最后稀里糊涂的就解决了,办法倒是简单:

  文件〉选项〉高级〉关闭“允许后台保存”选项

  原因我也不知道,反正有效就行了,不过可能会有一点小风险,后台不保存有可能会丢失位保存的内容。在没有找到更好的办法之前,先这样用吧。

 

  另外就是默认界面太亮了,晃眼睛,改成深灰色主题会有所改善:

  文件〉选项〉常规〉Office主题,选深灰色

 

后续: 

2013-04-10,今日装上最新发布的官方补丁,问题似乎解决了,有的时候也会慢,但基本正常了。

2013-05-13,使用中发现,带MathType公式的Visio 2013的图片不能完美贴到Word2013,公式变成非矢量图,没找到解决办法,现在已经把Visio单独换回2010版了。

2015-12-23,近期试了下Office 2016,保存慢的问题依旧,当然,我的老办法仍然有效。发现带MathType 6.9公式的Visio 2016的图片能完美贴到Word2016中,这个很好

<think>好的,我需要帮用户解决一个中文文本分类的问题,他们有7000条记录,分重点和一般级别。用户希望用Python 3.8离线操作,并且要分类准确率最高的方案。首先,我得回忆一下常见的文本分类方法,并考虑离线安装的限制。 首先,数据预处理是关键。中文文本需要分词,可能需要jieba库。然后转换成数值特征,TF-IDF或者词向量。不过用户要最高准确率,可能得用深度学习方法,比如BERT之类的预训练模型。但离线安装的话,得确认是否有办法提前下载好模型文件。 不过用户可能没有GPU,用深度学习可能不太现实,或者他们可以接受较慢的训练速度?或者可能传统机器学习方法更稳妥,比如SVM、随机森林,结合TF-IDF。不过通常深度模型效果更好,尤其是预训练的模型。 需要检查库的离线安装情况。比如,transformers库需要提前下载模型,可以离线安装。但安装包可能需要提前下载whl文件,比如sklearn、pandas、jieba、transformers、torch这些库的whl文件,用户需要先准备好。 那步骤大概是:1. 数据预处理,分词;2. 划分训练测试集;3. 特征提取,可能用BERT的嵌入;4. 构建分类模型,比如用BERT微调,或者用传统模型;5. 评估准确率。 考虑到准确率最高,可能微调BERT比较合适。不过得确保数据量足够,7000条可能够,但小部分可能是重点,类别不平衡的话需要处理,比如过采样或调整类别权重。 接下来,具体步骤如何操作呢?首先安装必要的库,比如用jieba分词,用transformers加载BERT模型,用torch训练。然后写代码加载数据,处理成BERT需要的输入格式,构建模型,训练,评估。 另外,数据需要标注,确保已经分好重点和一般。预处理时要处理缺失值,分词后可能需要去除停用词。但用BERT的话可能不需要分词,因为用的是WordPiece,不过中文BERT的分词是字级别的?还是词?需要确认。 可能用户的数据是短文本还是长文本?如果是长文本,可能需要截断或者处理。但不管怎样,按BERT的最大长度处理。 然后模型选择,比如BERT加一个分类层,进行微调。或者使用更轻量的模型,如ALBERT,但效果可能稍差。不过用户要最高准确率,所以还是优先BERT。 代码方面,大致流程: 1. 加载数据,读取CSV或文本文件,假设用户的数据是结构化的,比如两列:text和label。 2. 将标签转为数值,比如重点为1,一般为0。 3. 划分训练集和测试集,stratified split保持类别分布。 4. 加载BERT的分词器和模型,比如bert-base-chinese。 5. 对文本进行编码,转换为input_ids, attention_mask等。 6. 创建数据集和数据加载器,设置batch size。 7. 定义模型结构,优化器,损失函数(考虑类别权重)。 8. 训练循环,可能多个epoch,保存最佳模型。 9. 在测试集评估准确率,计算其他指标如F1。 需要注意的点: - 离线安装时,需提前下载好所有依赖库,比如transformers、torch、sklearn、pandas、numpy、jieba等。 - 类别不平衡的处理,如果重点数据很少,需要在损失函数中设置class_weight,或者在采样时平衡。 - 超参数调整,比如学习率、batch size、epoch数,可能需要交叉验证,但数据量不大,可以手动调整。 - 数据增强,比如对少数类进行回译或同义词替换,但需要额外处理。 - 模型保存和加载,方便后续使用。 替代方案,如果计算资源有限,可以用传统方法,如TF-IDF + SVM,可能速度更快,但准确率可能不如BERT。但用户明确要最高准确率,所以还是推荐BERT微调。 综上,步骤是预处理数据,用预训练的BERT模型进行微调,处理类别不平衡,训练并评估。同时给出代码示例,指导用户如何操作,并提醒注意依赖库的离线安装。</think>我将分步骤为您提供高准确率的文本分类解决方案(需提前离线安装以下库:scikit-learn, pandas, jieba, transformers, torch): 一、数据预处理 1. 安装依赖库(需提前下载whl文件): ```bash pip install pandas-*.whl sklearn-*.whl jieba-*.whl transformers-*.whl torch-*.whl ``` 2. 数据清洗与分词: ```python import jieba import pandas as pd def clean_text(text): # 去除特殊字符 text = re.sub(r"[^\u4e00-\u9fa5a-zA-Z0-9]", "", text) return text def tokenize(text): return " ".join(jieba.lcut(clean_text(text))) # 读取数据(假设CSV格式,包含text和label列) data = pd.read_csv("data.csv") data['tokenized'] = data['text'].apply(tokenize) ``` 二、构建深度学习模型(推荐方案) ```python from transformers import BertTokenizer, BertForSequenceClassification import torch from sklearn.model_selection import train_test_split # 划分数据集 X_train, X_test, y_train, y_test = train_test_split( data['tokenized'], data['label'], test_size=0.2, stratify=data['label']) # 加载预训练模型 tokenizer = BertTokenizer.from_pretrained("bert-base-chinese") model = BertForSequenceClassification.from_pretrained( "bert-base-chinese", num_labels=2, hidden_dropout_prob=0.3 ) # 转换为BERT输入格式 train_encodings = tokenizer(list(X_train), truncation=True, padding=True, max_length=128) test_encodings = tokenizer(list(X_test), truncation=True, padding=True, max_length=128) # 创建PyTorch数据集 class Dataset(torch.utils.data.Dataset): def __init__(self, encodings, labels): self.encodings = encodings self.labels = labels def __getitem__(self, idx): item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()} item["labels"] = torch.tensor(self.labels.iloc[idx]) return item def __len__(self): return len(self.labels) train_dataset = Dataset(train_encodings, y_train) test_dataset = Dataset(test_encodings, y_test) ``` 三、模型训练与优化 ```python from transformers import Trainer, TrainingArguments import numpy as np from sklearn.metrics import accuracy_score, f1_score # 定义评估指标 def compute_metrics(p): preds = np.argmax(p.predictions, axis=1) return { "accuracy": accuracy_score(p.label_ids, preds), "f1": f1_score(p.label_ids, preds, average="weighted") } # 训练参数设置 training_args = TrainingArguments( output_dir="./results", num_train_epochs=5, per_device_train_batch_size=16, per_device_eval_batch_size=32, warmup_steps=500, weight_decay=0.01, logging_dir="./logs", evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True ) # 类别权重处理(解决不平衡问题) class_weight = torch.tensor([ len(data)/sum(data['label']==0), len(data)/sum(data['label']==1) ]).float() class CustomTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): labels = inputs.pop("labels") outputs = model(**inputs) logits = outputs.logits loss_fct = torch.nn.CrossEntropyLoss(weight=class_weight) loss = loss_fct(logits.view(-1, 2), labels.view(-1)) return (loss, outputs) if return_outputs else loss # 开始训练 trainer = CustomTrainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=test_dataset, compute_metrics=compute_metrics ) trainer.train() ``` 四、模型评估与使用 ```python # 测试集评估 results = trainer.evaluate() print(f"测试集准确率:{results['eval_accuracy']:.4f}") # 保存模型 torch.save(model.state_dict(), "best_model.pt") # 预测新数据 def predict(text): inputs = tokenizer(tokenize(text), return_tensors="pt", max_length=128, truncation=True) outputs = model(**inputs) return torch.argmax(outputs.logits).item() ``` 优化建议: 1. 数据增强:对少数类样本进行回译(中-英-中翻译)或同义词替换 2. 模型集成:结合多个模型的预测结果 3. 超参数调优:使用Optuna等工具进行自动调参 4. 注意力可视化:使用BertViz分析模型关注点 注意事项: 1. 提前下载BERT模型文件(bert-base-chinese)到本地 2. 训练时batch_size根据显存调整(16需要约8GB显存) 3. 类别极度不平衡时可考虑过采样(如SMOTE) 4. 建议使用GPU加速训练(如NVIDIA CUDA环境) 该方法在中文文本分类任务中通常能达到90%以上的准确率,实际效果取决于数据质量和类别分布。建议先在小样本上验证流程,再全量训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值