特征缩放(feature scaling)

  1. 为什么会出现特征缩放?
    因为在对训练集,进行梯度下降的时候,会出现一种情况,以三维的 J ( θ 1 , θ 2 ) J(\theta_1,\theta_2) J(θ1,θ2)为例,得到的三维图像非常不均匀,狭长,想象一下银河系的形状。在这种类型的大型训练集中操作,学习算法是迂回前进的,比起走直线要多花费不少时间,在这种情况下:
    程序员:我要让他变短。
    数学家:两点之间,直线最短。随便拐个弯也没什么,总比绕来绕去好啊。
    于是,他们坚持着,能短的都让它短了的原则,对坐标轴进行缩放,使之更均匀,于是就有了特征缩放。
缩放前
缩放前
就这样,成功减短纷纷露出了欣慰的笑容。
  1. 特征缩放的方法
    2.1 Rescaling (min-max normalization)
    x ′ = x − m i n ( x ) m a x ( x ) − m i n ( x ) x'=\frac{x-min(x)}{max(x)-min(x)} x=max(x)min(x)xmin(x)
    常见的映射范围有 [0, 1] 和 [-1, 1] ,主要用于一些数据范围太大和太小的问题。
    2.2 Mean normalization
    x ′ = x − a v e r a g e ( x ) m a x ( x ) − m i n ( x ) x'=\frac{x-average(x)}{max(x)-min(x)} x=max(x)min(x)xaverage(x)
    2.3 Standardization
    x ′ = x − μ σ x'=\frac{x-\mu}\sigma x=σxμ
    μ \mu μ 是样本数据的均值(mean), σ \sigma σ 是样本数据的标准差(std)变成了一个均值为 0 ,方差为 1 的正态分布。
    2.4 Scaling to unit length
    x ′ = x ∣ ∣ x ∣ ∣ x'=\frac {x}{||x||} x=xx
    L 0 范 数 : ∥ w ∥ 0 = # ( i )   w i t h   x i ≠ 0 ( 非 零 元 素 的 个 数 ) L_{0} 范数: \left \| w \right \|_{0} = \#(i)\ with \ x_{i} \neq 0 (非零元素的个数) L0w0=#(i) with xi̸=0)
    L 1 范 数 : ∥ w ∥ 1 = ∑ i = 1 d ∣ x i ∣ ( 每 个 元 素 绝 对 值 之 和 ) L_{1} 范数: \left \| w \right \|_{1} = \sum_{i = 1}^{d}\lvert x_i\rvert (每个元素绝对值之和) L1w1=i=1dxi
    L 2 范 数 : ∥ w ∥ 2 = ( ∑ i = 1 d x i 2 ) 1 / 2 ( 欧 氏 距 离 ) L_{2} 范数: \left \| w \right \|_{2} =\Bigl(\sum_{i = 1}^{d} x_i^2\Bigr)^{1/2} (欧氏距离) L2w2=(i=1dxi2)1/2
    L p 范 数 : ∥ w ∥ p = ( ∑ i = 1 d x i p ) 1 / p L_{p} 范数: \left \| w \right \|_{p} = \Bigl(\sum_{i = 1}^{d} x_i^p\Bigr)^{1/p} Lpwp=(i=1dxip)1/p
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值