两种归一化的对比(标准化 VS 缩放),都会改变数据分布!

一,标准化

即把一个向量的均值和标准差算出来,然后每一个分量都减去均值再除以标准差,得到的就是归一化之后的结果。

归一化之后的数据有正有负,服从均值为0方差为1的标准正态分布

python实现函数:

 def standardization(data):
    mu = np.mean(data, axis=0)
    sigma = np.std(data, axis=0)
    return (data - mu) / sigma

其实一般机器学习中,把数据送入分类器比如SVM或者神经网络之前,都要对提取好的特征做标准化,虽然论文说的是normalization,但是其实做的是standardization。

实验

  • 在matlab中生成一组正态分布的随机数
a = random('Normal', 3,3, [1, 100]);%均值为3,标准差为3,1行100列
figure,plot(a,'b'),hold on
b = (a - mean(a))/std(a,0,2);%std
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值