卷积神经网络的训练算法,卷积神经网络数学建模

本文详细介绍了深度神经网络的训练过程,强调了反向传播的重要性,并通过CNN的工作原理进行了深入探讨。作者建议动手实践以加深理解,包括构建自己的CNN模型,并分享了一段使用Keras构建CNN的Python代码示例。此外,提到了数据增强在训练过程中的应用,以提高模型的泛化能力。
摘要由CSDN通过智能技术生成

深度神经网络是如何训练的?

Coursera的Ng机器学习,UFLDL都看过。没记错的话Ng的机器学习里是直接给出公式了,虽然你可能知道如何求解,但是即使不知道完成作业也不是问题,只要照着公式写就行。

反正我当时看的时候心里并没能比较清楚的明白。我觉得想了解深度学习UFLDL教程-Ufldl是不错的。有习题,做完的话确实会对深度学习有更加深刻的理解,但是总还不是很清晰。

后来看了LiFeiFei的StanfordUniversityCS231n:ConvolutionalNeuralNetworksforVisualRecognition,我的感觉是对CNN的理解有了很大的提升。

沉下心来推推公式,多思考,明白了反向传播本质上是链式法则(虽然之前也知道,但是当时还是理解的迷迷糊糊的)。所有的梯度其实都是对最终的loss进行求导得到的,也就是标量对矩阵or向量的求导。

当然同时也学到了许多其他的关于cnn的。并且建议你不仅要完成练习,最好能自己也写一个cnn,这个过程可能会让你学习到许多更加细节和可能忽略的东西。

这样的网络可以使用中间层构建出多层的抽象,正如我们在布尔线路中做的那样。

例如,如果我们在进行视觉模式识别,那么在第一层的神经元可能学会识别边,在第二层的神经元可以在边的基础上学会识别出更加复杂的形状,例如三角形或者矩形。第三层将能够识别更加复杂的形状。依此类推。

这些多层的抽象看起来能够赋予深度网络一种学习解决复杂模式识别问题的能力。然后,正如线路的示例中看到的那样,存在着理论上的研究结果告诉我们深度网络在本质上比浅层网络更加强大。

谷歌人工智能写作项目:神经网络伪原创

卷积神经网络cnn究竟是怎样一步一步工作的

用一个卷积核滑动图片来提取某种特征(比如某个方向的边),然后激活函数用ReLU来压制梯度弥散文案狗

对得到的结果用另一个卷积核继续提取+reLU,然后池化(保留区域最大或者用区域平均来替换整个局部区域的值,保证平移不变性和一定程度上对过拟合的压制)之后“深度”的话,就会需要对池化后的结果继续用不同的卷积核进行“卷积+relu”再池化的工作。

最后得到的实质是一个图片的深度特征,然后实际分类需要另外加一层,一般是softmax。

(也就是说如果对一个现成的已经训练完毕的卷积神经网络模型,只保留除了最后一层之外的部分,然后输入训练图片,把网络的输出重新送入一个多类的SVM再训练,最后也能得到差不多的结果,取决于svm的参数。)

卷积神经网络训练的参数是什么

卷积神经网络是不是按顺序一张一张来训练的

卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。

[1]  它包括卷积层(alternatingconvolutionallayer)和池层(poolinglayer)。卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。

20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(ConvolutionalNeuralNetworks-简称CNN)。

现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。

K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。

其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。

怎样用python构建一个卷积神经网络

用keras框架较为方便首先安装anaconda,然后通过pip安装keras以下转自wphh的博客。

#coding:utf-8'''    GPU run command:        THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python     CPU run command:        python 2016.06.06更新:这份代码是keras开发初期写的,当时keras还没有现在这么流行,文档也还没那么丰富,所以我当时写了一些简单的教程。

现在keras的API也发生了一些的变化,建议及推荐直接上看更加详细的教程。

'''#导入各种用到的模块组件from __future__ import absolute_importfrom __future__ import print_functionfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.models import Sequentialfrom  import Dense, Dropout, Activation, Flattenfrom keras.layers.advanced_activations import PReLUfrom keras.layers.convolutional import Convolution2D, MaxPooling2Dfrom keras.optimizers import SGD, Adadelta, Adagradfrom keras.utils import np_utils, generic_utilsfrom six.moves import rangefrom data import load_dataimport randomimport numpy as np(1024)  # for reproducibility#加载数据data, label = load_data()#打乱数据index = [i for i in range(len(data))]random.shuffle(index)data = data[index]label = label[index]print(data.shape[0], ' samples')#label为0~9共10个类别,keras要求格式为binary class matrices,转化一下,直接调用keras提供的这个函数label = np_utils.to_categorical(label, 10)################开始建立CNN模型################生成一个modelmodel = Sequential()#第一个卷积层,4个卷积核,每个卷积核大小5*5。

1表示输入的图片的通道,灰度图为1通道。

#border_mode可以是valid或者full,具体看这里说明:.conv2d#激活函数用tanh#你还可以在(Activation('tanh'))后加上dropout的技巧: (Dropout(0.5))(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28))) (Activation('tanh'))#第二个卷积层,8个卷积核,每个卷积核大小3*3。

4表示输入的特征图个数,等于上一层的卷积核个数#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(8, 3, 3, border_mode='valid'))(Activation('tanh'))(MaxPooling2D(pool_size=(2, 2)))#第三个卷积层,16个卷积核,每个卷积核大小3*3#激活函数用tanh#采用maxpooling,poolsize为(2,2)(Convolution2D(16, 3, 3, border_mode='valid')) (Activation('relu'))(MaxPooling2D(pool_size=(2, 2)))#全连接层,先将前一层输出的二维特征图flatten为一维的。

#Dense就是隐藏层。16就是上一层输出的特征图个数。

4是根据每个卷积层计算出来的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4#全连接有128个神经元节点,初始化方式为normal(Flatten())(Dense(128, init='normal'))(Activation('tanh'))#Softmax分类,输出是10类别(Dense(10, init='normal'))(Activation('softmax'))##############开始训练模型###############使用SGD + momentum#model.compile里的参数loss就是损失函数(目标函数)sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])#调用fit方法,就是一个训练过程. 训练的epoch数设为10,batch_size为100.#数据经过随机打乱shuffle=True。

verbose=1,训练过程中输出的信息,0、1、2三种方式都可以,无关紧要。show_accuracy=True,训练时每一个epoch都输出accuracy。

#validation_split=0.2,将20%的数据作为验证集。

(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)"""#使用data augmentation的方法#一些参数和调用的方法,请看文档datagen = ImageDataGenerator(        featurewise_center=True, # set input mean to 0 over the dataset        samplewise_center=False, # set each sample mean to 0        featurewise_std_normalization=True, # divide inputs by std of the dataset        samplewise_std_normalization=False, # divide each input by its std        zca_whitening=False, # apply ZCA whitening        rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)        width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)        height_shift_range=0.2, # randomly shift images vertically (fraction of total height)        horizontal_flip=True, # randomly flip images        vertical_flip=False) # randomly flip images# compute quantities required for featurewise normalization # (std, mean, and principal components if ZCA whitening is applied)(data)for e in range(nb_epoch):    print('-'*40)    print('Epoch', e)    print('-'*40)    print("Training...")    # batch train with realtime data augmentation    progbar = generic_utils.Progbar(data.shape[0])    for X_batch, Y_batch in (data, label):        loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)        (X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )"""。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 卷积神经网络是一种深度学习模型,它的核心思想是使用卷积层对图像进行特征提取。 卷积层的计算过程是:对输入的图像使用一个小的卷积核(又称滤波器)进行卷积运算,然后将卷积结果加上一个偏置项,再使用激活函数进行非线性变换。具体来说,假设我们有一个输入图像 $X$,卷积核 $W$ 和偏置项 $b$,那么卷积层的输出 $Y$ 就是: $$Y=f(X*W+b)$$ 其中 $*$ 表示卷积运算,$f(\cdot)$ 表示激活函数。 卷积运算本质上是一种二维卷积运算,它对输入图像的每一个子区域进行卷积运算。假设输入图像 $X$ 的大小是 $H\times W$,卷积核 $W$ 的大小是 $h\times w$,那么卷积层输出 $Y$ 的大小就是 $(H-h+1)\times (W-w+1)$。 卷积神经网络通常包含多个卷积层,每一层都会对图像进行特征提取。为了使特征提取更有效,卷积神经网络还会使用池化层进行特征降维和缩放不变性的处理。池化层的计 ### 回答2: 卷积神经网络(Convolutional Neural Networks,简称CNN)是一种广泛应用于图像识别、自然语言处理等领域的深度学习模型。其背后有一些数学推导作为基础。 卷积操作是CNN的核心部分之一。其数学推导基于信号处理中的卷积运算。卷积操作用于提取输入数据中的特征。在CNN中,输入数据被表示为多维张量,可以是二维的图像或更高维的数据。卷积运算通过将一个卷积核(也称为滤波器)与输入数据进行滑动操作,计算出一系列特征映射。卷积核是一个小的可学习参数矩阵,它在滑动操作中与输入数据的局部区域作矩阵乘法运算并求和,最终得到一个输出值。通过改变卷积核的参数,卷积运算可以捕捉到不同的特征。 卷积神经网络的另一个重要概念是池化操作(Pooling)。池化操作用于减小特征映射的空间尺寸,降低计算量并增强特征的鲁棒性。常见的池化操作有最大值池化和平均值池化。数学推导中,池化操作实际上是对特征映射进行下采样操作,通过保留主要信息而减少冗余信息。 卷积神经网络中的非线性激活函数也是其重要组成部分。常见的激活函数有Sigmoid函数、ReLU函数等。激活函数引入非线性变换,使得网络能够学习非线性关系。数学推导中,激活函数通过对线性输出进行非线性映射,将输入传递给下一层。 此外,卷积神经网络还包括反向传播算法进行训练。反向传播算法的数学推导基于链式法则。通过计算损失函数对网络参数的梯度,可以使用梯度下降等优化方法来更新网络参数,实现对网络的训练。 综上所述,卷积神经网络的理论数学推导包括卷积操作、池化操作、激活函数以及反向传播算法。这些推导为CNN提供了强大的建模能力,使得其在图像识别、自然语言处理等领域取得了许多重要的成果。 ### 回答3: 卷积神经网络(Convolutional Neural Network,CNN)是一种广泛应用于图像识别和模式识别领域的深度学习模型。它的理论数学推导基于信号处理领域的卷积运算和神经网络的反向传播算法。 首先,卷积神经网络的核心操作是卷积运算。卷积运算可以看作是一种滤波操作,它通过将输入信号与一个权重矩阵(卷积核)进行卷积计算,得到输出特征图。这一操作可以有效地提取输入信号的局部特征,并保持空间关系的稳定性。 在卷积神经网络中,卷积层是其中最重要的组成部分。其数学推导基于卷积运算的定义,通过将输入特征图与卷积核进行逐元素相乘,并求和得到输出特征图的每个像素值。卷积层可以通过多个卷积核提取多种不同的特征,从而实现更复杂的图像识别任务。 另外,卷积神经网络还包括池化层和全连接层。池化层通过降采样操作,将特征图的尺寸减小,提取更加抽象的特征。全连接层则将池化层输出的特征进行展平,并通过反向传播算法调整权重,最终完成分类或回归任务。 为了进行卷积神经网络训练,需要定义一个损失函数来衡量模型预测结果与真实标签之间的差异。通常使用交叉熵损失函数作为卷积神经网络的损失函数。通过梯度下降算法和反向传播算法,可以根据损失函数对卷积神经网络的参数进行优化,提高模型的性能。 总的来说,卷积神经网络的理论数学推导基于信号处理中的卷积运算和神经网络的反向传播算法。通过卷积层、池化层和全连接层的组合,可以提取输入信号的特征,从而完成图像识别和模式识别等任务。而损失函数和优化算法则用于训练卷积神经网络,使其能够更好地预测和分类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值