神经网络自适应评判控制,自组织模糊神经网络

人工神经网络有哪些类型

人工神经网络模型主要考虑网络连接的拓扑结构、神经元的特征、学习规则等。目前,已有近40种神经网络模型,其中有反传网络、感知器、自组织映射、Hopfield网络、波耳兹曼机、适应谐振理论等。

根据连接的拓扑结构,神经网络模型可以分为:(1)前向网络网络中各个神经元接受前一级的输入,并输出到下一级,网络中没有反馈,可以用一个有向无环路图表示。

这种网络实现信号从输入空间到输出空间的变换,它的信息处理能力来自于简单非线性函数的多次复合。网络结构简单,易于实现。反传网络是一种典型的前向网络。

(2)反馈网络网络内神经元间有反馈,可以用一个无向的完备图表示。这种神经网络的信息处理是状态的变换,可以用动力学系统理论处理。系统的稳定性与联想记忆功能有密切关系。

Hopfield网络、波耳兹曼机均属于这种类型。学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。

由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。

在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。

有效的学习算法,使得神经网络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。

根据学习环境不同,神经网络的学习方式可分为监督学习和非监督学习。

在监督学习中,将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。

当样本情况发生变化时,经学习可以修改权值以适应新的环境。使用监督学习的神经网络模型有反传网络、感知器等。非监督学习时,事先不给定标准样本,直接将网络置于环境之中,学习阶段与工作阶段成为一体。

此时,学习规律的变化服从连接权值的演变方程。非监督学习最简单的例子是Hebb学习规则。竞争学习规则是一个更复杂的非监督学习的例子,它是根据已建立的聚类进行权值调整。

自组织映射、适应谐振理论网络等都是与竞争学习有关的典型模型。

研究神经网络的非线性动力学性质,主要采用动力学系统理论、非线性规划理论和统计理论,来分析神经网络的演化过程和吸引子的性质,探索神经网络的协同行为和集体计算功能,了解神经信息处理机制。

为了探讨神经网络在整体性和模糊性方面处理信息的可能,混沌理论的概念和方法将会发挥作用。混沌是一个相当难以精确定义的数学概念。

一般而言,“混沌”是指由确定性方程描述的动力学系统中表现出的非确定性行为,或称之为确定的随机性。

“确定性”是因为它由内在的原因而不是外来的噪声或干扰所产生,而“随机性”是指其不规则的、不能预测的行为,只可能用统计的方法描述。

混沌动力学系统的主要特征是其状态对初始条件的灵敏依赖性,混沌反映其内在的随机性。

混沌理论是指描述具有混沌行为的非线性动力学系统的基本理论、概念、方法,它把动力学系统的复杂行为理解为其自身与其在同外界进行物质、能量和信息交换过程中内在的有结构的行为,而不是外来的和偶然的行为,混沌状态是一种定态。

混沌动力学系统的定态包括:静止、平稳量、周期性、准同期性和混沌解。混沌轨线是整体上稳定与局部不稳定相结合的结果,称之为奇异吸引子。

谷歌人工智能写作项目:小发猫

简单介绍人工神经网络和模糊神经网络

其实百科介绍的很详细,如“人工神经网络是模拟人脑结构的思维功能,具有较强的自学习和联想功能,人工干预少,精度较高,对专家知识的利用也较少深度学习对比神经网络,深度学习卷积神经网络

但缺点是它不能处理和描述模糊信息,不能很好利用已有的经验知识,特别是学习及问题的求解具有黑箱特性,其工作不具有可解释性,同时它对样本的要求较高;模糊系统相对于神经网络而言,具有推理过程容易理解、专家知识利用较好、对样本的要求较低等优点,但它同时又存在人工干预多、推理速度慢、精度较低等缺点,很难实现自适应学习的功能,而且如何自动生成和调整隶属度函数和模糊规则,也是一个棘手的问题。

”即保证人工神经网络自身的学习能力下,采用模糊理论解决模糊信号,使神经网络权系数为模糊权,或者输入为模糊量。

比如原本神经网络处理的是连续数据(double)不适合求解模糊数据,此时就需要引入模糊理论,来构造适合于求解这类模糊数据的神经网络。

英文文献 高分悬赏!谢谢

本节我们详细介绍硬件的实现。ANFIS控制器目标的实现需要真正具有智能的步进电机。神经模糊方法可以让电机具备适应环境条件变化的能力。

步进电机在配备了这种智能控制器后,就能够按照新的数据来训练自己,更新参数,进而改变自己的行为方式。首先我们要提到的是,ANFIS的实现需要一款能够满足所有数值计算要求的特种微处理器。

按照ANFIS方法论的要求,训练是在自适应网络上完成的,它要用到相关问题变量的时间序列数据。为此,我们选用了“Jstamp”微处理器。

该处理器采用JAVA作为自己的编程语言,拥有512KB的RAM内存和512KB的闪存。图13给出的就是我们在研发工作中使用的Jstamp微处理器。ANFIS实现的总体框架结构如图14所示。

图中为简化起见,我们只给出了九种模糊算法规则中的四种,但它们的结构都是类似的。

从该图中我们也可以感受到ANFIS方法所具备的混合特性,因为它的前向运动采用了最小二乘方法,而后向运动采用的是后向传播算法。

这些算法都是采用JAVA语言实现,它们可以随后下载到Jstamp微处理器中构成控制器。我们还使用了一款微控制器来检测编码器的位置,这就是Ubicom公司的SX28微控制器。

SX28是一种基于闪存和RISC体系结构的。图15是编码器位置检测的连接框图。在本节中,我们将采用仿真和实验的方法对步进电机模糊控制的跟踪和自适应特性进行测试。

首先,我们在图16给出了步进电机对阶跃输入信号的响应(我们用了400个采样点)。图17是使用了ANFIS方法的训练数据和测试数据后的结果。

我们采用20个时间点进行训练,最终误差为0.000001,这对于该项应用是一个非常好的结果。在图18中,我们给出了模糊模型的预测值与系统实际值的对比曲线,二者实际几乎完全重合。

最后,我们在图19给出实际信号与模糊模型预估信号的差异曲线。你是研究自控的?旦愿对你有帮助!

BP神经网络的原理的BP什么意思

人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(ErrorBack-Prooaeation),简称为BP网络。

在1986年以Rumelhart和McCelland为首的科学家出版的《ParallelDistributedProcessing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。

多层感知网络是一种具有三层或三层以上的阶层型神经网络。

典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:图4.1三层BP网络结构(1)输入层输入层是网络与外部交互的接口。

一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。

一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。

(2)隐含层1989年,RobertHechtNielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。

增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。

误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。

(3)输出层输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。

如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。

以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。

BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。

实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。

所以误差逆传播神经网络也简称BP(BackPropagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。

网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。

典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):(1)首先,对各符号的形式及意义进行说明:网络输入向量Pk=(a1,a2,...,an);网络目标向量Tk=(y1,y2,...,yn);中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;中间层各单元的输出阈值θj,j=1,2,...,p;输出层各单元的输出阈值γj,j=1,2,...,p;参数k=1,2,...,m。

(2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。(3)随机选取一组输入和目标样本提供给网络。

(4)用输入样本、连接权wij和阈值θj计算中间层各单元的输入sj,然后用sj通过传递函数计算中间层各单元的输出bj。

基坑降水工程的环境效应与评价方法bj=f(sj)j=1,2,...,p(4.5)(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct。

基坑降水工程的环境效应与评价方法Ct=f(Lt)t=1,2,...,q(4.7)(6)利用网络目标向量,网络的实际输出Ct,计算输出层的各单元一般化误差。

基坑降水工程的环境效应与评价方法(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差。

基坑降水工程的环境效应与评价方法(8)利用输出层各单元的一般化误差与中间层各单元的输出bj来修正连接权vjt和阈值γt。

基坑降水工程的环境效应与评价方法(9)利用中间层各单元的一般化误差,输入层各单元的输入Pk=(a1,a2,...,an)来修正连接权wij和阈值θj。

基坑降水工程的环境效应与评价方法(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。

(11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。(12)学习结束。

可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。通常,经过训练的网络还应该进行性能测试。

测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。

这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。

为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。

什么是BP神经网络?

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。

经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。

3、计算网络实际输出与期望输出的误差。4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。

5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

神经网络控制的书籍目录

第1章神经网络和自动控制的基础知识1.1人工神经网络的发展史1.1.120世纪40年代——神经元模型的诞生1.1.220世纪50年代——从单神经元到单层网络,形成第一次热潮1.1.320世纪60年代——学习多样化和AN2的急剧冷落1.1.420世纪70年代——在低迷中顽强地发展1.1.520世纪80年代——AN2研究热潮再度兴起1.1.620世纪90年代——再现热潮,产生许多边缘交叉学科1.1.7进入21世纪——实现机器智能的道路漫长而又艰难1.2生物神经元和人工神经元1.2.1生物神经元1.2.2人工神经元1.3生物神经网络和人工神经网络1.3.1生物神经网络1.3.2人工神经网络1.4自动控制的发展史1.4.1从传统控制理论到智能控制1.4.2智能控制的产生与基本特征1.4.3智能控制系统1.5模糊集与模糊控制概述1.5.1模糊集1.5.2模糊隶属函数1.5.3模糊控制1.6从生物神经控制到人工神经控制1.6.1生物神经控制的智能特征1.6.2人工神经控制的模拟范围1.7小结习题与思考题第2章神经计算基础2.1线性空间与范数2.1.1矢量空间2.1.2范数2.1.3赋范线性空间2.1.4L1范数和L2范数2.2迭代算法2.2.1迭代算法的终止准则2.2.2梯度下降法2.2.3最优步长选择2.3逼近论2.3.1Banach空间和逼近的定义2.3.2L2逼近和最优一致逼近2.3.3离散点集上的最小二乘逼近2.4神经网络在线迭代学习算法2.5Z变换2.5.1Z变换的定义和求取2.5.2Z变换的性质2.5.3Z反变换2.6李雅普诺夫意义下的稳定性2.6.1非线性时变系统的稳定性问题2.6.2李雅普诺夫意义下的渐进稳定2.6.3李雅普诺夫第二法2.6.4非线性系统的稳定性分析2.7小结习题与思考题第3章神经网络模型3.1人工神经网络建模3.1.1MP模型3.1.2Hebb学习法则3.2感知器3.2.1单层感知器3.2.2多层感知器3.3BP网络与BP算法3.3.1BP网络的基本结构3.3.2BP算法及步长调整3.4自适应线性神经网络3.5自组织竞争型神经网络3.5.1自组织竞争型神经网络的基本结构3.5.2自组织竞争型神经网络的学习算法3.6小脑模型神经网络3.6.1CMAC的基本结构3.6.2CMAC的工作原理3.6.3CMAC的学习算法与训练3.7递归型神经网络3.7.1DTRNN的网络结构3.7.2实时递归学习算法3.8霍普菲尔德(Hopfield)神经网络3.8.1离散型Hopfield神经网络3.8.2连续型Hopfield神经网络3.8.3求解TSP问题3.9小结习题与思考题第4章神经控制中的系统辨识4.1系统辨识基本原理4.1.1辨识系统的基本结构4.1.2辨识模型4.1.3辨识系统的输入和输出4.2系统辨识过程中神经网络的作用4.2.1神经网络辨识原理4.2.2多层前向网络的辨识能力4.2.3辨识系统中的非线性模型4.3非线性动态系统辨识4.3.1非线性动态系统的神经网络辨识4.3.2单输入单输出非线性动态系统的BP网络辨识4.4多层前向网络辨识中的快速算法4.5非线性模型的预报误差神经网络辨识4.5.1非动态模型建模,4.5.2递推预报误差算法4.6非线性系统逆模型的神经网络辨识4.6.1系统分析逆过程的存在性4.6.2非线性系统的逆模型4.6.3基于多层感知器的逆模型辨识4.7线性连续动态系统辨识的参数估计4.7.1Hopfield网络用于辨识4.7.2Hopfield网络辨识原理4.8利用神经网络联想功能的辨识系统4.8.1二阶系统的性能指标4.8.2系统辨识器基本结构4.8.3训练与辨识操作4.9小结习题与思考题第5章人工神经元控制系统5.1人工神经元的PID调节功能5.1.1人工神经元PID动态结构5.1.2人工神经元闭环系统动态结构5.2人工神经元PID调节器5.2.1比例调节元5.2.2积分调节元5.2.3微分调节元5.3人工神经元闭环调节系统5.3.1系统描述5.3.2Lyapunov稳定性分析5.4人工神经元自适应控制系统5.4.1人工神经元自适应控制系统的基本结构5.4.2人工神经元自适应控制系统的学习算法5.5人工神经元控制系统的稳定性5.6小结习题与思考题第6章神经控制系统6.1神经控制系统概述6.1.1神经控制系统的基本结构6.1.2神经网络在神经控制系统中的作用6.2神经控制器的设计方法6.2.1模型参考自适应方法6.2.2自校正方法6.2.3内模方法6.2.4常规控制方法6.2.5神经网络智能方法6.2.6神经网络优化设计方法6.3神经辨识器的设计方法6.4PID神经控制系统6.4.1PID神经控制系统框图6.4.2PID神经调节器的参数整定6.5模型参考自适应神经控制系统6.5.1两种不同的自适应控制方式6.5.2间接设计模型参考自适应神经控制系统6.5.3直接设计模型参考自适应神经控制系统6.6预测神经控制系统6.6.1预测控制的基本特征6.6.2神经网络预测算法6.6.3单神经元预测器6.6.4多层前向网络预测器6.6.5辐射基函数网络预测器6.6.6Hopfield网络预测器6.7自校正神经控制系统6.7.1自校正神经控制系统的基本结构6.7.2神经自校正控制算法6.7.3神经网络逼近6.8内模神经控制系统6.8.1线性内模控制方式6.8.2内模控制系统6.8.3内模神经控制器6.8.4神经网络内部模型6.9小脑模型神经控制系统6.9.1CMAC控制系统的基本结构6.9.2CMAC控制器设计6.9.3CMAC控制系统实例6.10小结习题与思考题第7章模糊神经控制系统7.1模糊控制与神经网络的结合7.1.1模糊控制的时间复杂性7.1.2神经控制的空间复杂性7.1.3模糊神经系统的产生7.2模糊控制和神经网络的异同点7.2.1模糊控制和神经网络的共同点7.2.2模糊控制和神经网络的不同点7.3模糊神经系统的典型结构7.4模糊神经系统的结构分类7.4.1松散结合7.4.2互补结合7.4.3主从结合7.4.4串行结合7.4.5网络学习结合7.4.6模糊等价结合7.5模糊等价结合中的模糊神经控制器7.5.1偏差P和偏差变化率Δe的获取7.5.2隶属函数的神经网络表达7.6几种常见的模糊神经网络7.6.1模糊联想记忆网络7.6.2模糊认知映射网络7.7小结习题与思考题第8章神经控制中的遗传进化训练8.1生物的遗传与进化8.1.1生物进化论的基本观点8.1.2进化计算8.2遗传算法概述8.2.1遗传算法中遇到的基本术语8.2.2遗传算法的运算特征8.2.3遗传算法中的概率计算公式8.3遗传算法中的模式定理8.3.1模式定义和模式的阶8.3.2模式定理(Schema)8.4遗传算法中的编码操作8.4.1遗传算法设计流程8.4.2遗传算法中的编码规则8.4.3一维染色体的编码方法8.4.4二维染色体编码8.5遗传算法中的适应度函数8.5.1将目标函数转换成适应度函数8.5.2标定适应度函数8.6遗传算法与优化解8.6.1适应度函数的确定8.6.2线性分级策略8.6.3算法流程8.7遗传算法与预测控制8.8遗传算法与神经网络8.9神经网络的遗传进化训练8.9.1遗传进化训练的实现方法8.9.2BP网络的遗传进化训练8.10小结习题与思考题附录常用神经控制术语汉英对照参考文献……

智能控制的类型

分级递阶智能控制是在自适应控制和自组织控制基础上,由美国普渡大学Saridis提出的智能控制理论.分级递阶智能控制(HierarchicalIntelligentControl)主要由三个控制级组成,按智能控制的高低分为组织级,协调级,执行级,并且这三级遵循伴随智能递降精度递增原则。

组织级(organizationlevel):组织级通过人机接口和用户(操作员)进行交互,执行最高决策的控制功能,监视并指导协调级和执行级的所有行为,其智能程度最高.协调级(Coordinationlevel):协调级可进一步划分为两个分层:控制管理分层和控制监督分层.执行级(executivelevel):执行级的控制过程通常是执行一个确定的动作.专家指的是那些对解决专门问题非常熟悉的人们,他们的这种专门技术通常源于丰富的经验,以及他们处理问题的详细专业知识.专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题.它具有启发性,透明性,灵活性,符号操作,不一确定性推理等特点.应用专家系统的概念和技术,模拟人类专家的控制知识与经验而建造的控制系统,称为专家控制系统.专家系统是利用专家知识对专门的或困难的问题进行描述.用专家系统所构成的专家控制,无论是专家控制系统还是专家控制器,其相对工程费用较高,而且还涉及自动地获取知识困难、无自学能力、知识面太窄等问题.尽管专家系统在解决复杂的高级推理中获得较为成功的应用,但是专家控制的实际应用相对还是比较少。

神经网络是指由大量与生物神经系统的神经细胞相类似的人工神经元互连而组成的网络;或由大量象生物神经元的处理单元并联互连而成.这种神经网络具有某些智能和仿人控制功能.学习算法是神经网络的主要特征,也是当前研究的主要课题.学习的概念来自生物模型,它是机体在复杂多变的环境中进行有效的自我调节.神经网络具备类似人类的学习功能.一个神经网络若想改变其输出值,但又不能改变它的转换函数,只能改变其输人,而改变输人的唯一方法只能修改加在输人端的加权系数.神经网络的学习过程是修改加权系数的过程,最终使其输出达到期望值,学习结束.常用的学习算法有:Hebb学习算法,widrowHoff学习算法,反向传播学习算法一BP学习算法,Hopfield反馈神经网络学习算法等。

神经网络是利用大量的神经元按一定的拓扑结构和学习调整方法.它能表示出丰富的特性:并行计算、分布存储、可变结构、高度容错、非线性运算、自我组织、学习或自学习等.这些特性是人们长期追求和期望的系统特性.它在智能控制的参数、结构或环境的自适应、自组织、自学习等控制方面具有独特的能力.神经网络可以和模糊逻辑一样适用于任意复杂对象的控制,但它与模糊逻辑不同的是擅长单输入多输出系统和多输入多输出系统的多变量控制.在模糊逻辑表示的SIMO系统和MIMO系统中,其模糊推理、解模糊过程以及学习控制等功能常用神经网络来实现.模糊神经网络技术和神经模糊逻辑技术:模糊逻辑和神经网络作为智能控制的主要技术已被广泛应用.两者既有相同性又有不同性.其相同性为:两者都可作为万能逼近器解决非线性问题,并且两者都可以应用到控制器设计中.不同的是:模糊逻辑可以利用语言信息描述系统,而神经网络则不行;模糊逻辑应用到控制器设计中,其参数定义有明确的物理意义,因而可提出有效的初始参数选择方法;神经网络的初始参数(如权值等)只能随机选择.但在学习方式下,神经网络经过各种训练,其参数设置可以达到满足控制所需的行为.模糊逻辑和神经网络都是模仿人类大脑的运行机制,可以认为神经网络技术模仿人类大脑的硬件,模糊逻辑技术模仿人类大脑的软件.根据模糊逻辑和神经网络的各自特点,所结合的技术即为模糊神经网络技术和神经模糊逻辑技术.模糊逻辑、神经网络和它们混合技术适用于各种学习方式智能控制的相关技术与控制方式结合或综合交叉结合,构成风格和功能各异的智能控制系统和智能控制器是智能控制技术方法的一个主要特点.所谓模糊控制,就是在被控制对象的模糊模型的基础上,运用模糊控制器近似推理手段,实现系统控制的一种方法.模糊模型是用模糊语言和规则描述的一个系统的动态特性及性能指标.模糊控制的基本思想是用机器去模拟人对系统的控制.它是受这样事实而启发的:对于用传统控制理论无法进行分析和控制的复杂的和无法建立数学模型的系统,有经验的操作者或专家却能取得比较好的控制效果,这是因为他们拥有日积月累的丰富经验,因此人们希望把这种经验指导下的行为过程总结成一些规则,并根据这些规则设计出控制器.然后运用模糊理论,模糊语言变量和模糊逻辑推理的知识,把这些模糊的语言上升为数值运算,从而能够利用计算机来完成对这些规则的具体实现,达到以机器代替人对某些对象进行自动控制的目的。

模糊逻辑用模糊语言描述系统,既可以描述应用系统的定量模型也可以描述其定性模型.模糊逻辑可适用于任意复杂的对象控制.但在实际应用中模糊逻辑实现简单的应用控制比较容易.简单控制是指单输入单输出系统(SISO)或多输入单输出系统(MISO)的控制.因为随着输入输出变量的增加,模糊逻辑的推理将变得非常复杂。

学习是人类的主要智能之一,人类的各项活动也需要学习.在人类的进化过程中,学习功能起着十分重要的作用.学习控制正是模拟人类自身各种优良的控制调节机制的一种尝试.所谓学习是一种过程,它通过重复输人信号,并从外部校正该系统,从而使系统对特定输人具有特定响应.学习控制系统是一个能在其运行过程中逐步获得受控过程及环境的非预知信息,积累控制经验,并在一定的评价标准下进行估值,分类,决策和不断改善系统品质的自动控制系统。

(1)遗传算法学习控制智能控制是通过计算机实现对系统的控制,因此控制技术离不开优化技术。快速、高效、全局化的优化算法是实现智能控制的重要手段。

遗传算法是模拟自然选择和遗传机制的一种搜索和优化算法,它模拟生物界/生存竞争,优胜劣汰,适者生存的机制,利用复制、交叉、变异等遗传操作来完成寻优。

遗传算法作为优化搜索算法,一方面希望在宽广的空间内进行搜索,从而提高求得最优解的概率;另一方面又希望向着解的方向尽快缩小搜索范围,从而提高搜索效率。

如何同时提高搜索最优解的概率和效率,是遗传算法的一个主要研究方向。

遗传算法作为一种非确定的拟自然随机优化工具,具有并行计算、快速寻找全局最优解等特点,它可以和其他技术混合使用,用于智能控制的参数、结构或环境的最优控制。

(2)迭代学习控制迭代学习控制模仿人类学习的方法、即通过多次的训练,从经验中学会某种技能,来达到有效控制的目的。迭代学习控制能够通过一系列迭代过程实现对二阶非线性动力学系统的跟踪控制。

整个控制结构由线性反馈控制器和前馈学习补偿控制器组成,其中线性反馈控制器保证了非线性系统的稳定运行、前馈补偿控制器保证了系统的跟踪控制精度。它在执行重复运动的非线性机器人系统的控制中是相当成功的。

加了模糊控制器,仿真速度很慢,怎么解决?

人工智能在电气传动中运用的进展(1)摘要:本文论述了人工智能在电气传动领域的发展概况。

其中主要包括模糊控制、神经网络和遗传算法的应用特点及发展趋势等关键词:神经网络控制模糊神经元控制自适应控制一、引言人工智能控制技术一直没能取代古典控制方法。

但随着现代控制理论的发展,控制器设计的常规技术正逐渐被广泛使用的人工智能软件技术(人工神经网络、模糊控制、模糊神经网络、遗传算法等)所替代。

这些方法的共同特点是:都需要不同数量和类型的必须的描述系统和特性的“apriori”知识。由于这些方法具有很多优势,因此工业界强烈希望开发、生产使用这些方法的系统,但又希望该系统实现简单、性能优异。

由于控制简单,直流传动在过去得到了广泛的使用。但由于它们众所周知的限制以及DSP技术的进步,直流传动正逐渐被高性能的交流传动所取代。

但最近,许多厂商也推出了一些改进的直流驱动产品,但都没有使用人工智能技术。具信使用人工智能的直流传动技术能得到进一步的提高。高性能的交流传动瞬态转矩的控制性能类似于他励直流电机的控制性能。

现有两种高性能交流传动的控制方法:矢量控制(VC)和直接转矩控制(DTC)。

矢量控制是德国的研究人员在二十多年前提出的,现在已经比较成熟,并已广泛应用,很多生产厂商都推出了他们的矢量控制交流传动产品,最近又大量推出了无速度传感器的矢量控制产品。

尽管在高性能驱动产品中使用AI技术会极大地提高产品的性能,可是到目前为止只有两个厂家在他们的产品中使用了人工智能(AI)控制器;直接转矩控制是大约在十五年前由德国和日本的研究人员提出的,在过去十年中得到大量的研究,现在ABB公司已向市场推出了直接转矩控制的传动产品,使得人们对直接转矩控制的研究兴趣增加,将来在直接转矩控制中将会用到人工智能技术,并将完全地不需要常规的电机数学模型了。

英国CT公司(ControlTechniqueplc)推出了世界上第一台统一变频器(Unidrive),其他一些公司也推出了相应的产品,现在这些产品都没有使用人工智能技术,“统一”的概念完全依靠软件实现,这就为软计算技术的实现提供了条件。

具信在将来统一变频器将使用直接转矩控制以及各种形式的矢量控制,单一使用直接转矩控制技术的产品将遭到淘汰。本文也将讨论人工智能在统一变频器中运用的一些方面,同时也包括AI控制器在VC和DTC中的运用。

AI控制器能否工业运用的关键一点是:实现这些控制器的硬件和软件。大多数DSP控制的驱动器都有足够的计算能力实现人工智能的算法,并且都能得到大多数人工智能控制器软计算所需要的信号。

通过运用适当的控制策略,就能大大地减少计算和硬件的负担,从而把注意力集中于提高驱动器的性能、鲁棒性和可靠性上面。

在将来,智能技术在电气传动技术中占相当重要的地位,特别是自适应模糊神经元控制器在性能传动产品中将得到广泛应用。

但是,还有很多研究工作要做,现在还只有少数实际应用的例子(学术研究组实现少,工业运用的就更少了),大多数研究只给出了理论或仿真结果,因此,常规控制器在将来仍要使用相当长一段时间。

二、人工智能控制器的优势文献中,不同的人工智能控制通常用完全不同的方法去讨论。但AI控制器例如:神经、模糊、模糊神经,以及遗传算法都可看成一类非线性函数近似器。

这样的分类就能得到较好的总体理解,也有利于控制策略的统一开发。

这些AI函数近似器比常规的函数估计器具有更多的优势,这些优势如下:(1)它们的设计不需要控制对象的模型(在许多场合,很难得到实际控制对象的精确动态方程,实际控制对象的模型在控制器设计时往往有很多不确实性因素,例如:参数变化,非线性时,往往不知道)(2)通过适当调整(根据响应时间、下降时间、鲁棒性能等)它们能提高性能。

例如:模糊逻辑控制器的上升时间比最优PID控制器快1.5倍,下降时间快3.5倍,过冲更小。(3)它们比古典控制器的调节容易。(4)在没有必须专家知识时,通过响应数据也能设计它们。

(5)运用语言和响应信息可能设计它们。(6)它们有相当好的一致性(当使用一些新的未知输入数据就能得到好的估计),与驱动器的特性无关。

现在没有使用人工智能的控制算法对特定对象控制效果十分好,但对其他控制对象效果就不会一致性地好,因此对必须具体对象具体设计。(7)它们对新数据或新信息具有很好的适应性。

(8)它们能解决常规方法不能解决的问题。(9)它们具有很好的抗噪声干扰能力。(10)它们的实现十分便宜,特别是使用最小配置时。(11)它们很容易扩展和修改。

人工智能控制器可分为监督、非监督或增强学习型三种。

常规的监督学习型神经网络控制器的拓朴结构和学习算法已经定型,这就给这种结构的控制器增加了限制,使得计算时间过长,常规非人工智能学习算法的应用效果不好。

采用自适应神经网络和试探法就能克服这些困难,加快学习过程的收敛速度。

常规模糊控制器的规则初值和模糊规则表是既定“a-priori”型,这就使得调整困难,当系统得不到“a-priori”(既定)信息时,整个系统就不能正常工作。

而应用自适应AI控制器,例如使用自适应模糊神经控制器就能克服这些困难,并且用DSP比较容易实现这些控制器。常规模糊逻辑控制器的设计经常使用尝试法。

需要“a-priori”信息,如运用自适应智能控制器就不需要“a-priori”(a-priroi规则库和隶属函数)信息。

值得注意的是,与常规非自适应智能控制器相反,它根据输入信号更新它的“参数”,换句话说,它对变化的输入信号具有适应性。

自适应控制器分两类:间接和直接控制器,间接自适应人工智能控制器有一个实时辩识模型,用于控制器的设计,间接控制器在每个采样周期需要采样控制对象的输入和输出信号,辩识器和控制器有很多形式,而直接AI控制器用特性表来实现对控制对象的控制,这个特性表由两个连续采样周期间的误差的变化量构成,用来控制电流响应。

如用模糊逻辑控制器,最简单的应用可能是标量因子的运用。这种方法用现在的非自适应驱动器很容易实现,因而对工业界具有很大的吸引力。用改变隶属函数形状的方法可实现相似的效果。

这种运用也可能通过改变规则来实现,如用直接AI控制器来实现,就是自适应控制器。它在每个采样瞬间先使用上一个采样周期采用的规则,如果得不到满意的特性,就用新的规则替代,从而得到满意的特性。

总而言之,当采用自适应模糊神经控制器,规则库和隶属函数在模糊化和反模糊化过程中能够自动地实时确定。

有很多方法来实现这个过程,但主要的目标是使用系统技术实现稳定的解,并且找到最简单的拓朴结构配置,自学习迅速,收敛快速。

三、人工智能在电气传动控制中的运用这一部分主要讨论人工智能在交直流传动中运用的进展。

值得指出的是这是一个广阔的领域,在过去二年中,研究活动极快的增长,本文只是概括一下人工智能在电气传动中的运用这一领域的进展,不可能覆盖研究的每一个可能领域。

AI控制器在直流传动中运用的大多数研究集中于模糊逻辑应用,在人工神经网络和其它智能控制的研究还很少。下面主要讨论模糊、神经元和模糊神经元和模糊神经元控制器在交直流传动中的应用。

(一)人工智能在直流传动中的运用1.模糊逻辑控制应用主要有两类模糊控制器,Mamdani和Sugeno型。到目前为止只有Mamdani模糊控制器用于调速控制系统中。

限于篇幅本文不详细讨论其中的原因。值得注意的是这两种控制器都有规则库,它是一个if-then模糊规则集。但Sugeno控制器的典型规则是“如果X是A,并且y是B,那么Z=f(x,y)”。

这里A和B是模糊集;Z=f(x,y)是x,y的函数,通常是输入变量x,y的多项式。当f是常数,就是零阶Sugeno模型,因此Sugeno是Mamdani控制器的特例。

Mamdani控制器由下面四个主要部分组成:(1)模糊化实现输入变量的测量、量化和模糊化。隶属函数有多种形式。(2)知识库由数据库和语言控制规则库组成。

开发规则库的主要方法是:把专家的知识和经历用于应用和控制目标;建模操作器的控制行动;建模过程;使用自适应模糊控制器和人工神经网络推理机制。

(3)推理机是模糊控制器的核心,能模仿人的决策和推理模糊控制行为。(4)反模糊化实现量化和反模糊化。

有很多反模糊化技术,纾畲蠡茨:屑淦骄际醯取?BR>下面的表1由64个语言规则组成,是用于电气传动控制系统的一种可能规则表这个规则表相当大,实际应用中往往进行简化。

在各种出版物中,介绍了许多被模糊化的控制器,但这应与“充分模糊”控制器完全区分开来,“充分模糊”控制器才是完全意义上的模糊控制器,被模糊化的控制器易于实现,往往通过改造现有古典控制器得以实现,如被模糊化的PI控制器(FPIC)使用模糊逻辑改变控制器的比例、积分参数,从而使系统的性能得到提高(17),控制器参数的微小变化可能导致特性的极大提高,被模糊化的控制器参数调整方法如下:P(ti)=P(ti-1)+kP*CP,I(ti)=I(ti-1)*CI。

但如应用“充分”模糊逻辑控制器,系统响应远远优于FPIC和最优古典PI控制器,用于最优化常规控制器的计算时间比模糊化控制器所需的时间多得多。

因此,使用最小配置的FPIC控制器是可能的选择之一,事实上,这也是用现有驱动装置实现的最简单方法。

在许多电气传动文献中,介绍了用模糊逻辑控制器替代古典PI控制器(主要是速度调节器)改进系统响应的方法。

可是,文献(18)详细探讨了模糊逻辑控制器用于三环直流电机控制系统中所有环节(速度、电流和励磁)的设计和调整的方法。

作者也介绍了PI和PD控制器,文献(9)介绍了最小配置模糊控制用于直流传动中的可能性以及组合模糊控制器用于直流传动中得到满意响应的可能性。

下节讨论模糊神经控制的直流传动装置时,我们将讨论这种速度和电枢电流调节器组合成单一控制器的情况。2.ANNS的应用过去二十年,人工神经网络(ANNS)在模式识别和信号处理中得到广泛运用。

由于ANNS有一致性的非线性函数估计器,因此它也可有效的运用于电气了传动控制领域,它们的优势是不需要被控系统的数学模型,一致性很好,对噪音不敏感。

另外,由于ANNS的并行结构,它很适合多传感器输入运用,比如在条件监控、诊断系统中能增强决策的可靠性,当然,最近电气传动朝着最小化传感器数量方向发展,但有时,多传感器可以减少系统对特殊传感器缺陷的敏感性,不需要过高的精度,也不需要复杂的信号处理。

误差反向传播技术是多层前聩ANN最常用的学习技术。

如果网络有足够多的隐藏层和隐藏结点以及适宜的激励函数,多层ANN只能实现需要的映射,没有直接的技术选择最优隐藏层、结点数和激励函数,通常用尝试法解决这个问题,反向传播训练算法是基本的最快下降法,输出结点的误差反馈回网络,用于权重调整,搜索最优。

输出结点的权重调整迭代不同于隐藏结点的权重调整迭代。通过使用反向传播技术,能得到需要的非线性函数近似值,该算法包括有学习速率参数,对网络的特性有很大影响。

反向传播算法是多层前聩ANN最广泛使用的学习技术之一。但有时网络的收敛速度很慢,改进算法的开发是一个重要研究领域。

英国Aberdeen大学在这方面取得过令人鼓舞的成绩,他们把常规的反向传播算法和其它AI技术结合起来,使得网络快速收敛,鲁棒性更好。

他们还研究过基于AI技术的最优拓扑结构网络,但没有现成理论用于最优配置,Kolgomorov理论和其他理论也不适用,在神经网络的训练剧中使用遗传算法可能会提高收敛速度,遗传算法是一种基于自然进化和遗传机理的统计搜索方法,它模仿自然界个体适者生存不适者淘汰的原理解决问题,每一代由染色体代表的(一套特征串类似于DNA中的染色体)许多个体组成,每个个体代表搜索空间的一个点和一个可能的解。

值得注意的是在神经模糊实现中,有时必须使用不同形式的反向传播技术,而不是已知的标准形式。

反向传播技术是在线(Supervised)学习技术,需要充分的输入--输出数据对,虽然这种限制也可以用另外的方法加以克服,但该方法是离线的。

日本和德国的研究人员试图把ANNS用于控制电力变换器,但到目前为止没有获得满意的结果,这也是一个很有趣的领域。

主要的有待解决的障碍是学习阶段时间花费过长,总而言之,问题的关键是要给变换器的控制器找到一个满意的非线性函数近似器、得到期望的非线性输入--输出映射。

常规技术就能实现简单的映射,而神经网络能实现更复杂的映射,并且由于它的并行结构这种映射相当快。只有很少的论文讨论神经网络在直流电机控制中的应用。

文献(21)介绍了两个多层前馈人工神经网络在直流电机速度控制环中的应用。这是一种典型配置。辩识ANN用于训练第二个ANN(神经控制器,即过程控制器),因此过程输出跟随给定信号。

学习过程用的是反向传播算法。该方法分为二步:第一步ANN被训练用来代表控制对象的响应。这需要用到表示控制对象输出和控制输入关系的微分方程。第二步把ANN用于控制对象模型的辩识方案中。

在这步中,把ANN与控制对象并行连接,每次迭代时,给ANN提供给定信号作为ANN输入信号。辩识意味着调整权重,使ANN输出信号(即网络输出)和控制对象输出信号(即正输出)的误差最小。

在辩识阶段,全局误差(即方差之和)以固定时间间隔被计算并与希望的最小值比较。第二个ANN是神经控制器被用于训练以给出需要的控制对象响应。

为了训练这个网络,在每次采样输出时,必须知道误差(Ec)但仅仅只知道控制对象输出和希望输出(由给定输入决定)的最后误差,辩识方案中的第一个ANN可将最后误差Ec反向传播,用来训练控制器ANN。

在误差最小化过程中,全局误差能被最小化到希望的值。经过训练辩识ANNS和控制ANNS,就可以在实时系统中运用被“调整”的神经自适应控制方案。

文献(21)介绍了采用ANN自适应速度控制方案的直流传动系统的良好特性以及抗干扰性能。这也证明辩识ANN学习到了直流电机、变换器和负载的、未知时不变非线性操作特性。

但值得指出的是,用于神经元控制器的训练时间有时相当长,但这个困难可以用上面提到的高级技术、避免使用常规的反向传播算法的方法中以克服。

文献(22)和(23)介绍了直流传动系统的ANN控制,给出了理论和实验结果。文献(9)讨论了直流传动的模糊神经速度控制器。

这是文献中记载的第一次用单神经控制器成功替代双环直流传动系统的常规速度和电流PI调节器的例子。相对地上面讨论过的直流传动系统,该系统运用了更多的智能技术,系统得到了进一步的简化。

有趣的是相对于古典多环PI调节器的实现,这里的电枢电流控制主要起限制电枢电流的作用,并且是通过单个速度、电流组合的模糊神经控制器“自动”加以实现。

(二)人工智能在交流传动中的应用1.模糊逻辑的应用在大多数讨论模糊逻辑在交流传动中运用的文章中,都介绍的是用模糊控制器取代常规的速度调节器,可英国Aberdeen大学开发的全数字高性能传动系统中有多个模糊控制器(4),这些模糊控制器不仅用来取代常规的PI或PID控制器,同时也用于其他任务。

该大学还把模糊神经控制器用于各种全数字高动态性能传动系统开发中。也有一些优秀的文章论述运用模糊逻辑控制感应电机的磁通和力矩。讨论这种技术的第一篇文章发表于1992年(24)。

该文中讨论了两种控制策略,如用第一种策略,规则表有36条规则,模糊控制器的输入是磁通和转矩误差,根据转矩和磁通误差,改变磁通矢量的辐值和旋转方向,反模糊化技术用到的是中心梯度法,第一种策略没有考虑最优电压矢量选择的梯度。

而第二种策略考虑了,这种方案被成功地实现了。Galvan的两篇文章(25)、(26)讨论了用模糊化速度控制器实现感应电机的矢量控制的方法。并给出了仿真结果。(也见3.1.1节讨论的模糊化控制器)。

矢量控制器也是一种间接控制类型,并且很好的特性。文献(27)提出了一种模糊逻辑速度控制器。它的输入标定因子是变化的。实验结果也验证了所提方案的有效性。

文献(28)给出了矢量控制器感应电机驱动系统的仿真结果。该系统中模糊速度控制器与常规的PI速度控制器和CRPWM塑变器一起使用,它往往用来补偿可能的惯性和负载转矩的扰动。

常规PI控制器用来稳定系统的稳态速度响应。矢量控制器使用转子磁通观测器观测(UI观测器,iw观测器(1)(4)),模糊逻辑用于转子电阻的估计。

到目前为止,只有两种运用人工智能技术的工业产品,其一是下节介绍的安川矢量变频器,另一个是日立矢量变频器,日立公司最近开发了J300系列IGBT矢量变频器,功率范围是5.5KW--55KW。

它的主要特点是使用无传感器矢量控制算法和强大的自调整功能。无传感器磁通矢量控制方案采样两相定子电流,在初始自整定阶段,电机和负载的惯性以及其他参数例如定子电感,定子和转子电阻、励磁电感等参数被计算。

日立公司宣称这是世界上第一台使用模糊控制的变频器。它考虑了电机和系统的特性,转矩计算软件在整个频率范围保证了转矩的精确控制。

变频器的主要性能指标如下:1Hz时150%或更高的启动转矩;在3∶1的速度范围(20到60HZ/16到50HZ)电机不用降低功率使用;速度调节比率小于。

J300系列变频器由于使用了高速微处理器和内置DSP,因此具有很的响应速度,转矩响应速度大约可达到0.1秒。它使用模糊逻辑控制电机电流和加减速斜率。

它能根据电机负载和制动需要计算加减速的最优时间,因此不需要尝试法进行调整。

模糊逻辑加减速度函数根据模糊规则设定加减速度比例因子和速度,而模糊规则则用当前值与过载限幅(或其它限幅)值的差值以及电机电流和电压的梯度作为输入变量。

梯度和差值构成四个隶属函数,两个隶属函数是三角函数,另二个是半梯形。当用常规的简单电流限幅控制,变频器的斜率是步进型的,经常引起变频器跳闸。特别是在减速时。

当用模糊逻辑控制时,斜率十分平滑,变频器假跳闸的现象也消除了。变频器在风机和泵类的运用最能体现模糊逻辑控制的优势。在这些应用中,不需要恒定的加减速时间或精确的位置控制。

在这些应用中,不需要恒定的加减速时间或精确的位置控制。需要的是与负载条件有关的加减速度的最优化。模糊控制能实现加减速度的最优控制。

AI控制器也能提高直接转矩控制系统的性能,这也是值得深入研究的一个宽广领域。英国Aberdeen大学的研究人员开发了基于人工智能的开关矢量选择器以及速度、转矩、磁通观测器等,初步结果令人鼓舞(9)。

可以预见不久的将业,将会得到更好的结果,将会出现更多的工业应用产品(47)(48)。

2.神经网络的应用非常少的文章讨论神经网络用于交流电机的控制,大量文章讨论神经网络在交流电机和驱动系统的条件监测和诊断中的运用。

文献(33)介绍了使用常规反向转波算法的ANN用于步进电机控制算法的最优化。该方案使用实验数据,根据负载转矩和初始速度来确定最大可观测速度增量。这就需要ANN学习三维图形映射。

该系统与常规控制算法(梯形控制法)相比具有更好的性能,并且大大减少了定位时间,对负载转矩的大范围变化和非初始速度也有满意的控制效果。文献(34)用两个ANNS控制和辩识感应电机,但只给出了仿真研究。

这是第一篇讨论神经网络在感应电机控制中的应用,这个方案与3.1节中讨论的直流驱动方案类似,ANNS的结构是多层前馈型,运用常规反向传播学习算法。

该系统由两个子系统构成,一个系统通过电气动态参数的辩识自适应控制定子电流,另一个系统通过对机电系统参数的辩识自适应控制转子速度。该文讨论了这些控制方案与常规方案的各种优点。

文献(35)讨论了基于人工神经网络的电气机械系统,文献(36)介绍了运用直接控制ANN观测电压源PWM供电的感应电机矢量控制系统中的磁通的方法。

这种基于ANN的磁通观测器的主要优点是对谐波具有免疫性。ANN是使用反向传播学习算法的多层前馈类型。ANN观测的磁通具有振荡性,因而引起转矩振荡。如果用别的方法,可能得到更好的结果。

最后值得指出的是现在发表的大多数有关ANN对各种电机参数估计的论文,一个共同的特点是,它们都是用多层前馈ANNS,用常规反向传播算法,只是学习算法的模型不同或被估计的参数不同。

四、结论本文试图对人工智能电气传动控制系统领域的进展做一回顾。内容涉及模糊控制、神经网络、模糊神经网络在电气传动系统中的应用,讨论了模糊、神经和模糊神经控制器等人工智能技术的优点。

也讨论了人工智能最小配置的应用。但到目前为止,使用人工智能技术的变速传动工业产品才刚刚出现,只有两家公司推出他们的产品。

虽然使用人工智能技术的实际产品和应用还不多,但不久的将来,人工智能技术在电气传动领域将会取得重要的地位,特别是自适应模糊神经控制器将在高性能驱动产品中得到广泛使用。

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值