Windows下python安装以及多版本管理

在 Windows 下安装 Python是一个比较简单的过程。以下是详细的步骤:

一、安装Python

1. 下载 Python 安装程序

  1. 访问 Python 官方网站:https://www.python.org/
  2. 在首页找到 “Downloads” 部分,点击 “Download Python x.x.x”(根据你的需求选择合适的版本,比如 Python 3.10.14)。
  3. 选择适合 Windows 的安装包。通常情况下,你会看到一个 .exe 文件,例如 python-3.10.14-amd64.exe

2. 安装 Python

  1. 双击下载的 .exe 文件启动安装程序。
  2. 在安装程序的初始界面,勾选 “Add Python to PATH” 选项,这样安装完成后 Python 就会被自动添加到系统的环境变量中。
  3. 点击 “Install Now” 开始安装。
  4. 安装过程中你可以选择安装的路径和其他选项,如安装额外的测试脚本等。
  5. 安装完成后,安装程序会提示你是否成功安装 Python。

3. 验证安装

  1. 打开命令提示符(按下 Win + R 键,输入 cmd 并按 Enter)。
  2. 输入 python -Vpython3 并按 Enter,就可以看到python版本号。

4. 配置环境变量(可选)

虽然在安装过程中勾选了 “Add Python to PATH”,但如果你需要手动配置或调整环境变量,可以按照以下步骤操作:

  1. 打开控制面板(可以通过搜索 “控制面板” 或右键点击开始按钮找到)。
  2. 找到 “系统和安全” -> “系统” -> “高级系统设置”。
  3. 在 “高级” 选项卡中点击 “环境变量” 按钮。
  4. 在 “系统变量” 区域找到名为 “Path” 的变量,并点击 “编辑”。
  5. 在 “变量值” 字段中添加 Python 的安装路径和 Scripts 目录。例如:
    • Python 安装路径:C:\Python310
    • Scripts 目录:C:\Python310\Scripts
  6. 点击 “确定” 保存更改。

5. 安装 pip(如果未安装)

大多数现代版本的 Python 已经自带了 pip,但如果需要单独安装或更新 pip,可以使用以下命令:

python -m ensurepip --upgrade

6. 测试 pip

  1. 在命令提示符中输入 pip --versionpip3 --version,查看 pip 是否正确安装。

7. 使用 pip 安装其他包

一旦 pip 安装完成,你可以使用它来安装其他 Python 包,例如:

pip install numpy

8. 配置虚拟环境(可选)

如果你打算开发一个项目,推荐使用虚拟环境来隔离项目依赖。你可以使用 venv 模块来创建虚拟环境:

  1. 打开命令提示符。
  2. 导航到你的项目目录。
  3. 运行以下命令创建一个新的虚拟环境:
    python -m venv myenv
    
  4. 激活虚拟环境:
    myenv\Scripts\activate
    
  5. 当你在虚拟环境中时,你可以使用 pip 安装所需的包。

二、Conda工具(Python多版本管理)

conda 是一个开源的包管理和环境管理系统,最初由 Anaconda, Inc. 开发。它是数据分析和科学计算领域非常流行的工具之一。

安装 conda

通过 Anaconda 发行版安装
  1. 访问 Anaconda 官方网站:https://www.anaconda.com/products/distribution
  2. 选择适合 Windows 的安装包下载。
  3. 运行下载的安装程序,并按照提示完成安装。
  4. 在安装过程中,可以选择是否将 Anaconda 添加到系统 PATH 环境变量中。
通过 Miniconda 安装

如果你只需要 conda 而不需要完整的 Anaconda 发行版,可以使用 Miniconda

  1. 访问 Miniconda 官方页面:https://docs.conda.io/en/latest/miniconda.html
  2. 选择适合 Windows 的安装包下载。
  3. 运行下载的安装程序,并按照提示完成安装。
  4. 在安装过程中,确保勾选 “Add Anaconda to my PATH environment variable” 选项。

使用 conda

1. 创建环境

创建一个新的 conda 环境:

conda create --name myenv
2. 激活环境

激活一个 conda 环境:

conda activate myenv
3. 列出环境

列出所有可用的 conda 环境:

conda info --envs
4. 安装包

安装一个包到当前激活的环境中:

conda install numpy
5. 更新包

更新一个包到最新版本:

conda update numpy
6. 卸载包

卸载一个包:

conda remove numpy
7. 删除环境

删除一个环境:

conda env remove --name myenv
8. 搜索包

搜索 PyPI 或 conda-forge 仓库中的包:

conda search numpy
9. 查看环境详情

查看当前环境中的包:

conda list
10. 导出环境

导出当前环境的依赖关系到一个 YAML 文件:

conda env export > environment.yml
11. 从文件创建环境

从 YAML 文件创建一个新环境:

conda env create -f environment.yml
12. 清理缓存

清理 conda 的缓存:

conda clean --all

高级用法

1. 指定通道安装

从特定的通道安装包:

conda install -c conda-forge numpy
2. 创建环境并安装多个包

创建环境并同时安装多个包:

conda create --name myenv numpy scipy pandas
3. 使用 Python API

你也可以通过 Python 脚本来调用 conda 的功能,例如:

from conda.cli import main

if __name__ == '__main__':
    main('create', '--name', 'myenv', 'numpy')

注意事项

  • 环境隔离:使用 conda 创建独立的环境可以帮助你更好地管理不同项目之间的依赖冲突。
  • 兼容性:确保你安装的包版本与你的 Python 版本兼容。
  • 更新 conda:定期更新 conda 可以确保你拥有最新的功能和修复。
  • 权限问题:如果你遇到权限问题,尝试使用管理员权限运行命令提示符。

三、Python包管理工具pip使用

  • 常用功能
# 查看 pip 的版本
pip --version
# 搜索包
pip search package-name
# 安装指定版本的包
pip install package-name==version
# 安装包及其依赖
pip install package-name[extra]
# 安装和升级指定包
pip install --upgrade package-name
# 从 requirements.txt 文件安装多个包
pip install -r requirements.txt
# 将已安装的包导出到 requirements.txt 文件
pip freeze > requirements.txt
# 使用国内镜像源加速安装
pip install package-name -i https://pypi.tuna.tsinghua.edu.cn/simple
# 检查是否有包需要更新
pip check
  • 其他
# 显示缓存目录
pip cache dir
# 清理缓存
pip cache purge
# URL 或本地文件安装
pip install package-url
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

问道飞鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值