已知摩尔斯电码和字符映射关系如下:
A -> 0
B -> 1
C -> 10
D -> 11
E -> 100
F -> 101
G -> 110
H -> 111
当前我们获取到了一串01数字字符串,需要进行摩尔斯电码解码,请问共有多少种解码方法?
这是一道典型的动态规划问题。
dp[i]表示第i个字符的解码方式。因此转移方程为dp[i] = dp[i-1] + dp[i-2] + dp[i-3]。这里dp[i] 至少为dp[i-1],因为dp[i]前已经有dp[i-1]种方式了,如果当前字符向后数的第两道三个字符满足条件,再加上他们各自的解码方式。
C/C++实现
#include <bits/stdc++.h>
using namespace std;
int main()
{
string str;
cin >> str;
int n = str.size();
vector<int> dp(n+1, 0);
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i <= n;i++)
{
dp[i] += dp[i-1];
string tmp = str.substr(i-2, 2);
if(tmp == "10" || tmp == "11")
dp[i] += dp[i-2];
if(i > 2)
{
tmp = str.substr(i-3,3);
if(tmp == "100" || tmp == "101" ||tmp == "111" ||tmp == "110")
dp[i] += dp[i-3];
}
}
cout << dp[n] << endl;
return 0;
}