方阵的主对角线之上称为“上三角”。
请你设计一个用于填充n阶方阵的上三角区域的程序。填充的规则是:使用1,2,3….的自然数列,从左上角开始,按照顺时针方向螺旋填充。
例如:当n=3时,输出:
1 2 3
6 4
5
当n=4时,输出:
1 2 3 4
9 10 5
8 6
7
当n=5时,输出:
1 2 3 4 5
12 13 14 6
11 15 7
10 8
9
程序运行时,要求用户输入整数n(3~20)
程序输出:方阵的上三角部分。
要求格式:每个数据宽度为4,右对齐。
解题思路:
1、先由左向右打印第一行
2、再由右上向左下打印斜对角线位置的值
3、最后由下往上打印
4、重复1-3
5、所有的路线走法以遇到非0停止
实现方法步骤:我们以 n = 10为例
1、定义一个二维数字,并设置一个非零边界
#define MAXLEN 22
#define NOZERO 1
int arr[22][22] = { 0 };
int num = 1;
int value;
scanf_s("%d", &value, sizeof(value));
for (i = 0; i < MAXLEN; i++) {
arr[i][0] = NOZERO;
arr[0][i] = NOZERO;
}
arr[num][value + 1] = NOZERO;
执行后的效果图如下
2、第一次由左向右打印首行
int i = 1;
int j = 0;
while (!arr[i][j + 1]) {
arr[i][++j] = num++;
}
执行后的效果图如下
3、第一次由右上向左下斜对角线打印
while (!arr[i + 1][j - 1]) {
arr[++i][--j] = num++;
}
执行后的效果图如下
4、第一次由下向上打印
while (!arr[i-1][j]) {
arr[--i][j] = num++;
}
执行后的效果图如下
5、加个循环操作,设置判断退出条件最多填充数 num <= (n * n – n) / 2 + n
for (i = 1, j = 0; num <= (value * value - value) / 2 + value;) {
while (!arr[i][j + 1]) {
arr[i][++j] = num++;
}
while (!arr[i + 1][j - 1]) {
arr[++i][--j] = num++;
}
while (!arr[i - 1][j]) {
arr[--i][j] = num++;
}
}
执行后的效果图如下
6、参考代码
#include<stdio.h>
#include<string.h>
#define MAXLEN 22
#define NOZERO 1
int main()
{
int arr[22][22] = { 0 };
int num = 1;
int i;
int j;
int value;
while (~scanf_s("%d", &value, sizeof(value))) {
for (i = 0; i < MAXLEN; i++) {
arr[i][0] = NOZERO;
arr[0][i] = NOZERO;
}
arr[num][value + 1] = NOZERO;
for (i = 1, j = 0; num <= (value * value - value) / 2 + value;) {
while (!arr[i][j + 1]) {
arr[i][++j] = num++;
}
while (!arr[i + 1][j - 1]) {
arr[++i][--j] = num++;
}
while (!arr[i - 1][j]) {
arr[--i][j] = num++;
}
}
for (i = 1; i <= value; i++) {
for (j = 1; j <= value + 1 - i; j++)
printf("%4d", arr[i][j]);
printf("\n");
}
memset(arr, 0, sizeof(arr));
num = 1;
}
return 0;
}