pytorch预测之解决多次预测结果不一致问题

pytorch预测之解决多次预测结果不一致问题
原文链接:https://www.jb51.net/article/213787.htm
1、检查是否在每次预测前使用

model.eval()
或者是
with torch.no_grad():
for …
推荐下面的方法,上面的的方法计算梯度,但是并不反向传播,下面的方法既不计算梯度,也不反向传播,速度更快。

2、检查是否取消了所有的dropout

3、设置随机种子

def setup_seed(seed):
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed) #cpu
torch.cuda.manual_seed_all(seed) #并行gpu
torch.backends.cudnn.deterministic = True #cpu/gpu结果一致
torch.backends.cudnn.benchmark = True #训练集变化不大时使训练加速

4、保证实例化模型前要将is_training置为false;这两行代码顺序不能颠倒

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值