在局面确定的双人对弈里,常采用博弈树搜索。我方追求更大的赢面,而对方会设法降低我方的赢面。由于局面确定,因此可以对赢面进行评估。我方往较大赢面的方向走,同时考虑对方的走法。由于对方的走法不确定,就假设对方会选择最大程度降低我方赢面的方向走,我方应规避那些对方可以大幅降低我方赢面的走法。
Minimax算法
称我方为MAX
,对方为MIN
,图示如下:
例如,对于如下的局势,假设从左往右搜索,根节点的数值为我方赢面(倒推值):
我方应选择中间的路线。因为,如果选择左边的路线,最差的赢面是3;如果选择中间的路线,最差的赢面是15;如果选择右边的路线,最差的赢面是1。虽然选择右边的路线可能有22的赢面,但对方也可能使我方只有1的赢面,假设对方会选择使得我方赢面最小的方向走,那么经过权衡,显然选择中间的路线更为稳妥。
实际上,在看右边的路线时,当发现赢面可能为1就不必再去看赢面为12、20、22的分支了,因为已经可以确定右边的路线不是最好的。这个过程就是剪枝,可以避免不必要的计算。
α − β \alpha-\beta α−β 剪枝
例如,对于如下的局势,假设从左往右搜索:
若已知某节点的所有子节点的倒推值,则可以算出该节点的倒推值:对于MAX
节点,取最大倒推值;对于MIN
节点,取最小倒推值。
若已知某节点的部分子节点的倒推值,虽然不能算出该节点的倒推值,但可以算出该节点的倒推值的取值范围。同时,利用该节点的倒推值的取值范围,在搜素其子节点时,如果已经确定没有更好的走法,就不必再搜索剩余的子节点了。
记 v v v 为节点的倒推值,且 α ≤ v ≤ β \alpha \leq v \leq \beta α≤v≤β,即 α \alpha α 为最大下界, β \beta β 为最小上界。当 α ≥ β \alpha \geq \beta α≥β 时,该节点剩余的分支就不必继续搜索了(也就是可以进行剪枝了)。注意,当 α = β \alpha = \beta α=