LTE里的CQI

1、CQI的定义

  CQI-Channel Quality Indication,信道质量指示,CQI由UE测量所得,因此,CQI一般指的是下行信道质量。eNodeB根据CQI信息选择合适的调度算法和下行数据块大小,以保证UE在不同的无线环境下获取最佳的下行性能。

2、引入CQI的原因

  PDSCH支持三种编码方式:QPSK、16QAM及64QAM,其对应三种星座图,从而所需要的信道条件也不相同,即:编码方式越高(QPSK<16QAM<64QAM),信道条件要求就越高。

     由于下行调度是由eNodeB决定的,而eNodeB作为发射端,并不知道信道质量的好坏,就比如一个人在讲话时,听不听得清楚是有听众感知的,因此信道质量的好坏也是由UE来衡量的。eNodeB决定要采用何种编码方式,就需要UE来反馈这个信道质量的好坏,LTE协议将信道质量的好坏量化成了0~15的序列(4个bit来承载),并定义为CQI。

3、CQI的选取标准

  CQI 值由UE测量并上报。LTE规范中没有明确定义CQI的测量方式,只定义了CQI的选取准则,即保证PDSCH的解码错误率(即BLER)小于10%所使用的CQI值。也就是说,UE 需要根据测量结果(比如SINR)评估下行链路特性,并采用内部算法确定此SINR 条件下所能获取的BLER值,并根据BLER<10%的限制,上报对应的CQI值。

4、CQI取值及其对应的编码方式

 

  其中,调制方式决定了调制阶数,它表示每1个符号中所传送的比特数。QPSK对应的调制阶数为2,16QAM为4,64QAM 为6。码率为传输块中信息比特数与物理信道总比特数之间的比值,即:

  码率= 传输块中信息比特数/物理信道总比特数= 信息比特数/(物理信道总符号数*调制阶数)= 效率/调制阶数

  由此可见,CQI 的不同取值决定了下行调制方式以及传输块大小之间的差异。CQI 值越大,所采用的调制编码方式越高,效率越大,所对应的传输块也约大,因此所提供的下行峰值吞吐量越高。

5、CQI影响因素

  UE 根据所测量的SINR 值来确定可用CQI 并上报到eNodeB,因此CQI 值主要与下行参考信号的SINR 有关。

  除此之外,CQI 还与UE 接收机的灵敏度、MIMO 传输模式和无线链路特性有关。具体表现为:

  • 相同信道质量条件下,UE接收机的灵敏度越高,所测得的SINR值越高,因此所上报的CQI值也越大。
  • MIMO模式、重传次数和天线数目都会影响BLE性能。由于CQI对应于10% BLER 所需的SINR值,因此,相同SINR条件下,3次重传比0次重传的CQI值更高,TM3/4比TM2的CQI更高,4天线比2天线所对应的CQI更高。

6、CQI对性能的影响

  根据上述分析可知,CQI在下行调度中起着非常关键的作用。UE根据SINR值估算CQI 并采用周期性或者非周期性方式进行上报,eNodeB则根据不同的CQI模式来提取出相应的宽带或者子带CQI信息,获悉UE在特定频带上的干扰情况,实现频率选择性或者非选择性调度。重要的是,eNodeB 根据CQI和PRB信息来获取MCS和TBS信息,从而直接影响到下行吞吐量。

  CQI 与单用户下行吞吐量之间的关系举例说明如下。

  假设UE 上报的CQI 为最大值15,其所对应的调制方式为64QAM,码率为0.926。则20MHz (对应100 个PRB)下,TD-LTE 系统物理层峰值最大速率计算如下:

  ①PRB 中RE数:(14符号/子帧)x(100个PRBx 12 RE/符号)=16800RE/子帧

  ②假定每个子帧中为3个PDCCH符号,则去除CFI所占用的RE数,得到:16800 RE/子帧-(3个PDCCH符号x(100个PRBx 12RE/ 符号))=13200RE/子帧

  ③物理层比特数与调制方式相关,64QAM所对应的调制阶数为6故:6 x 13200 = 79200 比特/子帧

  ④根据码率计算传输块大小:传输块中信息比特数= 物理信道总比特数x 码率=79200 x 0.926= 73340
  

  这意味着CQI=15时,20MHz带宽下所能承载的最大TBS为73340。假定上下行时隙配比是1:3,即一个5ms的TD-LTE半帧里有3个下行时隙,且根据规范要求,特殊子帧5 的DwPTS 中不能传送下行数据,则MIMO 模式下(2个码字同时传送),下行峰值速率为:73340(TBS)x 2(流数)x 3(下行时隙数)x 200(1s 内半帧数)= 88008000 bit = 88Mbps.

  上面的例子中,如果采用其他CQI 值,则对应的码率和调制方式有所不同,因此每个TTI 中所能传送的传输块的大小也会有所区别,从而导致下行吞吐量产生差异。因此,CQI 在下行调度中起着非常关键的作用。

  UE 和eNodeB 调度算法中CQI 评估和测量机制对系统性能有着直接影响。举例来讲,如果UE 上报的CQI 较低,但是系统却错误地发送了较大的TBS,则可能导致UE解码失败并发送ACK信息,从而产生重传,影响到系统的资源利用率。反之,如果实际无线环境较差,但是UE上报的CQI值较高,则网络根据CQI选择较大的TBS,而这也同样可能导致UE 解码失败,导致系统资源利用率降低。

  速度对于CQI报告准确性的影响也较大。速度越高,CQI偏差越大,因此应当减小发送周期,增加发送频率,以保证CQI信息的准确性。

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值