Shot
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 532 Accepted Submission(s): 315
Problem Description
“超人”霍华德在NBA扣篮大赛上要求把篮筐升高表演扣篮,但是却没有得到批准,现在我们的hhb也想要给大家表演一个,但是这次他想要表演的是投篮,篮筐放得越高,hhb的表演当然就越精彩,所以现在请你帮助hhb计算出篮筐离地最高能放多高。
假设把球投到篮框的高度就算球进。忽略球和框的大小。
![](https://i-blog.csdnimg.cn/blog_migrate/2d23f9e16b9bcb6ac1a8fe0ffb701315.jpeg)
假设把球投到篮框的高度就算球进。忽略球和框的大小。
Input
多组测试数据
每组测试数据包括3个浮点数h, l, v (1<=h<=2,1<=l<=100,0<v<=100),分别表示hhb的出手点高度,出手点离篮筐的水平距离和hhb投出的球的速度,h=l=v=0表示输入结束(球在运动过程中只受重力的作用,不受其它任何力的作用,重力加速度取g=9.8,题目中所有物理量均是国际单位制)
每组测试数据包括3个浮点数h, l, v (1<=h<=2,1<=l<=100,0<v<=100),分别表示hhb的出手点高度,出手点离篮筐的水平距离和hhb投出的球的速度,h=l=v=0表示输入结束(球在运动过程中只受重力的作用,不受其它任何力的作用,重力加速度取g=9.8,题目中所有物理量均是国际单位制)
Output
对于每组数据,输出一行,包含一个数,在球可以投进篮筐的情况下,篮筐可以离地的最高高度(输入保证这个值一定大于0)。输出保留到2位小数。
Sample Input
1.5 5.0 7.0 0 0 0
Sample Output
1.50/* 列出 h=vtsin-0.5gt2 l=vtcos 将t=l/vcos代入一式 h=l*tan+0.5g(l*l/v*v)/cos2 特别注意转化的时候用到1/cos2+1=tan2 h =l*tan-0.5g*l*l/(v*v)(tan2+1) =-0.5gll/vvtan^2+ltan-0.5gll/vv 求一元二次方程的最大值 当 tan=-l/2*(-0.5gll/vv)=vv/gl 的时候取最大值 代入得到下式 h=-0.5vv/g+vv/g-0.5gll/vv =0.5vv/g-0.5gll/vv */ #include <iostream> #include <cmath> using namespace std; const double g = 9.8; double h,l,v; double H() { return ( 0.5*v*v/g-0.5*g*l*l/(v*v) + h); } int main() { while(cin >> h >> l >> v && h && l && v) printf("%.2lf\n",H()); return 0; }