最近看了下deepnude的原理,其git上说的是使用了pixel2pixel技术,也就是说是这一篇:
《Image-to-Image Translation with Conditional Adversarial Networks》
这是加里福利亚大学在CVPR 2017上发表的一篇论文,讲的是如何用条件生成对抗网络实现图像到图像的转换任务。
> 原文链接:https://arxiv.org/abs/1611.07004
> 论文主页:https://phillipi.github.io/pix2pix/,其中包含了PyTorch、Tensorflow等主流框架的代码实现
所以我看了眼这篇文章,发现这篇文章其原理是由CGAN启发的,所以我们今天来看看CGAN是怎么一回事。
CGAN(条件GAN)全名:《Conditional Generative Adversarial Nets》
CGAN的论文网址请移步:https://arxiv.org/pdf/1411.1784.pdf
首先简要介绍一下GAN,具体介绍请移步:https://blog.csdn.net/wenqiwenqi123/article/details/86178376<