《Conditional Generative Adversarial Nets》论文解析

本文介绍了CGAN(条件生成对抗网络)的概念,它是在原始GAN的基础上增加了额外信息,如标签,使得生成器能根据指定标签生成特定图像。CGAN在图像到图像转换任务中有广泛应用,如论文《Image-to-Image Translation with Conditional Adversarial Networks》中提到的像素到像素转换技术。CGAN的网络架构结合了全连接层,通过调整目标函数,实现了更精确的图像生成。
摘要由CSDN通过智能技术生成

最近看了下deepnude的原理,其git上说的是使用了pixel2pixel技术,也就是说是这一篇:

《Image-to-Image Translation with Conditional Adversarial Networks》

这是加里福利亚大学在CVPR 2017上发表的一篇论文,讲的是如何用条件生成对抗网络实现图像到图像的转换任务。 
  > 原文链接:https://arxiv.org/abs/1611.07004 
  > 论文主页:https://phillipi.github.io/pix2pix/,其中包含了PyTorch、Tensorflow等主流框架的代码实现

 

所以我看了眼这篇文章,发现这篇文章其原理是由CGAN启发的,所以我们今天来看看CGAN是怎么一回事。

CGAN(条件GAN)全名:《Conditional Generative Adversarial Nets》

CGAN的论文网址请移步:https://arxiv.org/pdf/1411.1784.pdf

 

首先简要介绍一下GAN,具体介绍请移步:https://blog.csdn.net/wenqiwenqi123/article/details/86178376<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哎呦不错的温jay

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值