自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(116)
  • 收藏
  • 关注

原创 swig/python detected a memory leak of type ‘OSRSpatialReferenceShadow *‘, no destructor found.

data处理完后需要将内存释放。

2024-10-30 17:32:03 206

原创 setuptools封装自己python包

"""使用 find_packages 识别包中全部的模块(包含__init__.py 文件)└── src├── pkg1├── pkg2“install_requires”关键字指定依赖包,安装包的过程将优先安装依赖项"""setup(# 搜索路径“src”# 包含的模块),# 包的根目录# 依赖包],官方文档。

2024-10-19 17:15:29 345

原创 RuntimeError: Default process group has not been initialized, please make sure to call init_process_

【代码】RuntimeError: Default process group has not been initialized, please make sure to call init_process_

2024-10-18 21:01:20 168

原创 open-cd中的changerformer网络结构分析

通过上述内容,我们可以根据参数文件中的内容提取opencd中任意网络结构,或采用timm来设置主干网络结构,或添加到自己的训练框架中如pytorch_segmentation中进行训练。相应的,我们可以进一步去学习mmalb的框架结构。

2024-10-17 22:12:53 1011

原创 葵花卫星影像数据NC转tif

葵花8号卫星(Himawari-8)是日本发射的静止轨道气象卫星,由日本气象厅(JMA)运营。该卫星自2015年7月7日开始正式启用,主要用于观测东亚和西太平洋区域的天气情况。葵花8号卫星搭载了先进的光学仪器,能够提供高分辨率的气象数据。

2024-10-14 21:22:57 494

原创 bug:ValueError: num_samples should be a positive integer value, but got num_samples=0

未读取到样本完整报错main()

2024-10-12 14:56:49 345

原创 去噪扩散模型

图像扩散模型是一种生成模型,它基于概率扩散过程来生成新的图像。核心步骤包括:(1)前向扩散过程;(2)逆向扩散过程。

2024-10-05 13:43:05 330

原创 InfoGAN:通过信息最大化生成对抗网络进行可解释的表示学习

GAN 没有尝试显式地为数据分布中的每个 x 分配概率,而是学习生成器网络 G,该生成器网络 G 通过将噪声变量 z ∼ Pnoise(z) 转换为样本 G(z),从生成器分布 PG 生成样本。因此,对于给定的生成器,最佳判别器是 D(x) = Pdata(x)/(Pdata(x) + PG(x))。**在这种情况下,这些属性既是独立的又是显着的,如果能够在没有任何监督的情况下恢复这些概念,通过简单地指定 MNIST 数字是由独立的 1-of-10 变量和两个独立的连续变量生成的,那将会非常有用变量。

2024-10-03 12:03:51 942

原创 使用辅助分类器 GAN 进行条件图像合成

在AC-GANs中,判别器除了要区分生成的图像与真实图像外,还额外承担了一个分类任务,即对输入图像的类别进行分类。这种方法可以提高生成图像的质量,并且能够生成具有特定类别标签的图像。AC-GANs的关键在于引入了辅助分类器(Auxiliary Classifier),这个分类器被集成在判别器中,用于对输入图像的类别进行分类。判别器的输出包括两部分:一部分是判断图像是真实还是生成的,另一部分是对图像类别的预测。这种结构不仅提高了图像的全局一致性,而且增加了生成图像的类别信息。

2024-10-02 22:48:41 364

原创 cGANs with Projection Discriminator

判别器的构建是受到概率模型假设的启发,其中条件变量 y 给定 x 的分布是离散的或单峰连续分布。这种模型假设在许多实际应用中很常见,包括类条件图像生成和超分辨率。通过这种假设,可以形成一个需要在嵌入的条件向量 y 和特征向量之间进行内积的判别器结构。模型中,判别器(Discriminator)不是通过将条件信息简单地与特征向量拼接(concatenate)来使用条件信息,而是采用一种基于投影的方式,这种方式更加尊重条件信息在底层概率模型中的作用。

2024-10-02 22:09:02 232

原创 Conditional Generative Adversarial Nets

生成对网络由两个“对抗性”模型组成:一个生成模型 G,用于捕获数据分布,另一个判别模型 D,用于估计样本来自训练数据而不是 G 的概率。G 和 D 都可以是非线性映射函数。为了学习数据 x 上的生成器分布 Pg,生成器构建从先验噪声分布 pz(z) 到数据空间的映射函数 G(z;θg)。判别器 D(x;θd) 输出一个标量,表示 x 来自训练数据而不是 pg 的概率。

2024-10-02 21:23:33 1031

原创 NASAVIIRS数据下载

来自 Suomi NPP 的可见光红外成像辐射计套件 (VIIRS) 数据记录 - 该数据集系列包含来自 Suomi 国家极地轨道伙伴关系 (S-NPP) 卫星上的可见光红外成像辐射计套件 (VIIRS) 的传感器和环境数据记录。VIIRS 是一种扫描辐射计,可收集陆地、大气、冰冻圈和海洋的可见光和红外图像以及辐射测量。VIIRS 数据用于测量云和气溶胶特性、海洋颜色、海洋和陆地表面温度、冰运动和温度、火灾和地球反照率。

2024-09-01 13:32:10 478

原创 天气数据爬取

主要的python包requestsrepandaslxml。

2024-09-01 13:04:09 527

原创 OGR-空间参考

空间参考系统的坐标基准为参考椭球,如WGS84。数据投影的操作对象是坐标点,因此投影处理的基本单元是geometry;投影变换有两种方式1:Geo.TransformTo();# 计算转换参数# 调用转换方法进行转换。

2024-08-25 22:15:08 873

原创 矢量数据创建

点是操作矢量的基本元素,根据根据点列表可以创建线,线是基本单元,因此由面生成线与由线生成点,都是在现有矢量的基础上获取点列表,然后根据列表创建新的图层Fiona:几何数据读写shapely:几何数据分析shapely不支持坐标系转换。对两个或多个特征的所有操作都假定这些特征存在于同一笛卡尔平面中。

2024-08-25 20:51:04 576

原创 mmlab——跨项目调用主干网络

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。

2024-08-21 22:00:29 235

原创 c++基础——指针的使用条件

指针允许动态地分配内存,这在需要在运行时确定对象的数量或大小时非常有用。使用 new 关键字可以在堆上分配内存,并且可以在程序的任何地方动态释放它们。

2024-08-21 21:57:39 181

原创 OGR-矢量筛选

地理矢量数据的空间筛选、属性筛选、SQL筛选

2024-08-21 21:52:29 368

原创 GDAL-矢量数据读取与写入

矢量数据写入的操作相对复杂,在已有参考矢量元数据与属性数据已知的情况下,需要对新建是来那个输出数据实现包括是数据驱动、数据输出、创建图层(投影、几何类型)、未涂层添加字段属性、创建feature,将feature添加到图层中。需要明确source、layer、feature、字段与几何之间的关系;其中feature的字段名与类型要与layer中的字段名与类型相匹配,layer中的字段类型与feature中的字段名类型是公用集与字子集之间的关系。

2024-08-18 16:21:22 839

原创 mmalb-debug:assert ‘mix_results‘ in results

使用 MultiImageMixDataset 作为包装(wrapper)去混合多个数据集的图片。 MultiImageMixDataset可以被类似 mosaic 和 mixup 的多图混合数据増广使用。MultiImageMixDataset 与 Mosaic 数据増广一起使用的例子:reference1reference2-mmseg文档

2024-07-30 14:46:03 374

原创 Windows-安装WSL踩坑

安装过程中出现错误。分发名称: ‘Ubuntu’ 错误代码: 0x8000ffff。两个系统存在不同的安装方法,区别很大。正在安装: Ubuntu。

2024-07-28 10:59:03 747

原创 mmlab-debug

mask.cc1: fatal error C1083: 无法打开源文件: “pycocotools/_mask.c”: No such file or directory。

2024-07-27 11:55:18 663

原创 pytorch-scheduler(调度器)

scheduler(调度器)是一种用于调整优化算法中学习率的机制。学习率是控制模型参数更新幅度的关键超参数,而调度器根据预定的策略在训练过程中动态地调整学习率。优化器负责根据损失函数的梯度更新模型的参数,而调度器则负责调整优化过程中使用的特定参数,通常是学习率。调度器通过调整学习率帮助优化器更有效地搜索参数空间,避免陷入局部最小值,并加快收敛速度。调度器允许实现复杂的训练策略,学习率预热、周期性调整或突然降低学习率,这些策略对于优化器的性能至关重要。学习率绘图函数。

2024-07-26 22:41:27 1280

原创 MMLab-dataset_analysis

mmyolo、mmsegmentation等提供了数据集分析工具。

2024-07-14 19:38:53 991

原创 SSLChange: A Self-supervised Change Detection Framework Based on Domain Adaptation

SSLChange 框架在下游任务中采用了 Fine-Tuning method with clipped pre-trained encoder 的方式,即将预训练编码器进行裁剪并冻结参数,然后连接一个轻量级的对齐模块,将特征恢复到原始图像的尺寸,并与原始图像进行拼接,作为下游任务网络的输入。或许该方案是针对变化检测框架设计,并设计模块裁剪方案,文中并没采用CV领域经典的自监督预训练框架进行对比,目前大量变化检测算法论文采用默认的imagenet或经典的权重初始化方案进行模型权重的初始化。

2024-07-14 06:00:00 526

原创 debug-mmlab

solution:

2024-07-03 22:11:59 328

原创 图Transformer 推荐系统

这篇论文提出了一种新颖的推荐系统表示学习方法,该方法通过整合生成式自监督学习(SSL)和图变换器架构来实现。我们强调了使用相关自监督预训练任务进行高质量数据增强对于提升性能的重要性。为此,我们提出了一种新方法,它通过一种理由感知的生成式SSL自动化自监督增强过程,该方法能够提取信息丰富的用户-项目交互模式。我们提出的推荐系统Graph TransFormer(GFormer)提供了参数化的协作理由发现,以进行选择性增强,同时保持全局用户-项目关系。

2024-06-10 14:09:33 990

原创 高光谱图像聚类的像素-超像素对比学习与伪标签校正

本文提出了一种新的高光谱图像(HSI)聚类方法,名为像素-超像素对比学习与伪标签校正(PSCPC)。该方法结合了像素级和超像素级的对比学习,通过超像素捕获领域特定的细粒度特征,并在超像素内部对少量像素进行比较学习。PSCPC通过一个伪标签校正模块来对齐像素级和超像素级的聚类伪标签,使用像素级聚类结果来指导超像素级聚类,从而提高模型的泛化能力。

2024-06-08 14:52:14 1135

原创 对比深度图聚类的硬样本感知网络

本文提出了一种名为Hard Sample Aware Network (HSAN)的新方法,用于对比深度图聚类。HSAN通过引入全面相似性度量标准和动态样本加权策略,解决了现有硬样本挖掘方法中结构信息缺失和忽视硬正样本对的问题。HSAN不仅挖掘硬负样本,还挖掘硬正样本,以提高样本的区分能力。论文链接开源代码。

2024-06-08 13:48:37 823

原创 用于认知负荷评估的集成时空深度聚类(ISTDC)

本文提出了一种新型的集成时空深度聚类(ISTDC)模型,用于评估认知负荷。该模型首先利用深度表示学习(DRL)将高维EEG数据转换到低维特征空间,然后应用变分贝叶斯高斯混合模型(VBGMM)进行聚类分析。ISTDC模型通过四个算法实现,包括时间-空间变分自编码器(VAE)和多模态集成,有效地从EEG信号中提取时间与空间的潜在特征。在i-back任务中,所提出的模型在0-back与2-back任务对比中达到了98.0%的最大平均聚类准确率,相较于现有方法有显著提升。

2024-06-08 13:13:27 820

原创 ultralytics-极市平台打榜

UltralyticsYOLOv8YOLOv8 基于深度学习和计算机视觉领域的尖端技术,在速度和准确性方面具有无与伦比的性能。其流线型设计使其适用于各种应用,并可轻松适应从边缘设备到云 API 等不同硬件平台。

2024-06-05 23:25:14 693

原创 Feature Manipulation for DDPM based Change Detection

文章提出了一种基于去噪扩散概率模型(DDPM)的特征操作变化检测方法。变化检测是计算机视觉中的经典任务,涉及分析不同时间捕获的图像对,以识别场景中的重要变化。现有基于扩散模型的方法主要关注提取特征图,而本文的方法专注于操作扩散模型提取的特征图,使其在语义上更有用。文章提出了两种方法:特征注意力(Feature Attention)和流对齐融合(Flow Dual-Alignment Fusion, FDAF)。

2024-06-02 20:12:08 628

原创 A review of multi-class change detection for satellite remote sensing imagery

CD技术通过分析同一地理区域在不同时间获取的多时相遥感影像,来识别地面物体的变化。该技术对环境监测、城市扩张与重建以及灾害评估等研究领域具有重要意义。传统BCD主要关注变化区域和非变化区域,无法提供更细致的土地利用和覆盖(Land Use and Land Cover, LULC)变化信息。随着地球观测卫星技术的不断进步,遥感影像的空间分辨率不断提高,使得多类别变化检测(Multi-class Change Detection, MCD)成为研究的热点方向。

2024-06-02 19:43:10 969

原创 YOLO-10更快、更强

轻量化分类头:在不显著影响性能的情况下,减少了计算开销。空间-通道解耦下采样:解耦空间下采样和通道调整,优化计算成本。基于秩的块设计:根据各阶段的内在秩适应块设计,减少冗余,提高效率。大核卷积和部分自注意力PSA:在不显著增加计算成本的情况下,增强了感受野和全局建模能力。

2024-05-29 22:32:47 1110 1

原创 YoloV1模型

将图像划分S*S的规则格网,根据格网分别进行边界框-置信度预测以及格网类别的预测,置信度为类别概率与之边界框真实值与预测值的交并比;每个cell预测B个边界框与置信度。

2024-05-26 19:25:40 377

原创 深度学习训练框架——监督学习为例

本文内容以pytorch为例。

2024-05-25 14:58:26 644

原创 mmsegmentation——RS_Inference

mmseg支持利用多线程进行遥感影像的滑动预测。

2024-05-20 22:58:37 261

翻译 Pytorch-API:混合精度计算(AMP)

API最后还列举了一些CUDA/CPU数据类型的可转换介绍,详细可访问链接。

2024-05-18 23:11:15 254

原创 数据结构与算法-相对排序

利用字典对order2中的对应的列表元素进行计数或存储记录。剩余元素单独利用sorted进行排序。中出现的元素需要按照升序放在。的末尾,最终输出排序后的。解题思路:计数排序+分组。中元素的相对顺序相同,:根绝数组2排序数组1。中的所有元素都出现在。

2024-05-14 21:41:06 264

原创 数据结构与算法-基于回溯的全排列问题

首先通过循环去遍历每个可能的选择,选择一个数字后,记录选择,递归进行下一次选择。每次选择一个数子,利用selected记录已选择的。本文代码与参考代码略有不同:去除了状态变量。

2024-05-02 13:18:32 101

mmlab-train-test

VScode下非命令行运行的train.py与test.py,可以直接断点调试

2023-10-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除