Given a tape that contains at most 1,000,000 twenty-bit integers in random order, find a twenty-bit integer
that isn't on the tape (and there must be at least one missing - Why?).
a. How would you solve this problem with ample quantities of main memory?
b. How would you solve it if you had two tape drives, but only a few dozen words of main memory?
c. How would you solve it with only one tape drive (which contains the input), and only 48 words of main memory?
Solution:
Here's the discussion + solution in Bentley's "Programming Pearls".
[a.] Given a tape that contains at most one million twenty-bit integers in random order, we are to find
one twenty-bit integer not on the tape. (There must be at least one missing , because there are 2^20 or
1,048,576 such integers.) With ample main memory, we could use the bit-vector technique [...] and dedicate
131,072 8bit bytes to a bitmap representing the integers seen so far.
[b.] The problem, however, also asks how we can find the missing integer if we have only a few dozen
words of main memory and several extra tape drives. To set this up as a binary search we have to define a
range, a representation for the elements within the range, and a probing method to determine which half of
a range holds the missing integer . How can we do this?
We'll use as the range a sequence of integers known to contain at least one missing element, and we'll
represent the range by a tape containing all the integers in it. The insight is that we can probe a range by
counting the elements above and below its midpoint: either the upper or the lower range has at most half
the elements in the total range. Because the total range has a missing element, the lesser half must also
have a missing element. These are most of the ingredients of a binary search algorithm for the problem;
try putting them together yourself before you peek at the solutions to see how Ed Reingold did it. These
uses of binary search just scratch the surface of its applications in programming. A root finder uses binary
search to solve a single-variable equation by successively halving an interval; numerical analysts call this
the bisection method. When the selection algorithm in Solution 10.9 partitions around a random element
and then calls itself recursively on all elements on one side of that element, it is using a "randomized" binary
search. Other uses of binary search include tree data structures, data processing algorithms that run on card
sorters (which use the corresponding decimal search), and program debugging (when a program dies a silent
death, where do you place print commands to home in on the guilty statement?). In each of these examples,
thinking of the program as a few embellishments on top of the basic binary search algorithm can give the
programmer that all-powerful aha!
[Ed Reingold's solution of b. -- book, page 165]:
It is helpful to view this binary search in terms of the twenty bits that represent each integer . In the first
pass of the algorithm we read the (at most) one million input integers and write those with a leading zero bit
to one tape and those with a leading one bit to another tape. One Probe / One of those two tapes contains
at most 500,000 integers, so we next use that tape as the current input and repeat the probe process, but
this time on the second bit. If the original input tape contains N elements, the first pass will read N integers,
the second pass at most N/2, the third pass at most N/4, and so on, so the total running time is proportional
to N. The missing integer could be found by sorting on tape and then scanning, but that would require time
proportional to N log N. This problem and solution are due to Ed Reingold of the University of Illinois.
[c.] Here is an elegant, randomized solution. In our 48 8-words of main memory, we have enough space to
store 16 randomly, independently generated 20-bit words, sorted in increasing order (we only need a negligible
time to sort these words). In the remaining 48*8-16*20 = 64 bits we can keep a 1-bit marker (initially 0) for
the index of each random word (so we need 16 more bits). Pass once through the tape. For each word we read,
we check if it is already among our randomly generated words. (For this, we just make a binary search in a 16-long
sorted list - at most 5 comparisons). If we found that a word in memory is on the tape, we mark it, by making its bit
equal to 1 (so, we do at most one write operation per tape word). After the pass, we check to see if there is a word
among the 16 ones in memory, that was not found on the tape, by checking all the bits.If all bits are marked, we
repeat. Otherwise, output one word whose corresponding bit is 0.
Let's compute now the probability that all the 16 random words are on the tape.
Pr(x1, x2, ..., x16 are all on the tape) =
= Pr(x1 is on the tape)*P(x2 is on the tape)*...*P(x16 is on the tape)
= Pr(x1 is on the tape) ^ 16 (since the words are independently, identically distributed - obviously
uniform in the 20-bit word space)
<= ( 10^6 / 2^20 )^16 = (5^6 / 2^14)^16 = (5^3/2^7)^32 ~ 0.468
So, the probability of success is more than 50%. Since the number of passes is geometrically distributed, the expected
number of passes is then at most 2.