零基础入门语音识别-食物语音识别Task05

本次新人赛是Datawhale与天池联合发起的零基础入门系列赛事第八场 —— 零基础入门语音识别-食物声音识别挑战赛。
baseline及用图由开源学习组织Datawhale提供
https://github.com/datawhalechina/team-learning

过拟合和欠拟合

过拟合和欠拟合概念

过拟合是指模型对于训练数据拟合呈过当的情况,反映到评估指标上,就是模型在训练集上的表现很好,但在测试集和新数据上的表现较差。欠拟合指的是模型在训练和预测时表现都不好的情况。

降低过拟合风险的方法

(1)从数据入手,获得更多的训练数据。
(2)降低模型复杂度。
(3)正则化方法。
(4)集成学习方法。

降低欠拟合风险的方法

(1)添加新特征。
(2)增加模型复杂度。
(3)减小正则化系数。

泛化误差

我们想要提升的是模型在未知数据上的准确率,模型在未知数据上的准确率受什么因素影响?常用来衡量模型在未知数据上的准确率的指标,叫做泛化误差。泛化误差受到模型的结构(复杂度)影响。

偏差、方差

用过拟合、欠拟合来定性地描述模型是否很好地解决了特定的问题。从定量的角度来说,可以用模型的偏差(Bias)与方差(Variance)来描述模型的性能。
大概来说,可以用射击中靶来做比喻:最期望的结果就是射击结果又准确又集中,说明模型的偏差和方差都很小;而虽然射击结果的中心在靶心周围,但分布比较分散,说明模型的偏差较小但方差较大。

模型评估

在机器学习中,我们通常把样本分为训练集和测试集,训练集用于训练模型,测试集用于评估模型。在样本划分和模型验证的过程中,存在着不同的抽样方法和验证方法。
1)Holdout检验
2)交叉检验
3)自助法

学习心得

Task5的学习主要是关于模型本身的优化改进内容,就一开始的概念而言,还是看的比较懂的,学习内容上比喻的手法,也让我更容易理解一些概念。但是就如何去评估模型、优化模型、集成学习这一块单纯看还是不太理解,会在今日再找资料看看加深理解。
Ps:关于集成学习还没看太懂,在下一次的学习心得上会补上。

参考资料:Task5 食物声音识别-模型改进与优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值