动手学数据分析Task05

本学习笔记为Datewhale-7月组队学习-动手学数据分析的学习内容,学习链接为:https://github.com/datawhalechina/hands-on-data-analysis

模型搭建和评估–建模

这一章我们要做的就是使用数据,我们做数据分析的目的也就是,运用我们的数据以及结合我的业务来得到某些我们需要知道的结果。那么分析的第一步就是建模,搭建一个预测模型或者其他模型;我们从这个模型的到结果之后,我们要分析我的模型是不是足够的可靠,那我就需要评估这个模型。今天我们学习建模。
首先还是导入库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import Image
%matplotlib inline
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小

【思考】这些库的作用是什么呢?你需要查一查

matplotlib.pyplot是一个有命令风格的函数集合,它看起来和MATLAB很相似。每一个pyplot函数都使一副图像做出些许改变,例如创建一幅图,在图中创建一个绘图区域,在绘图区域中添加一条线等等。在matplotlib.pyplot中,各种状态通过函数调用保存起来,以便于可以随时跟踪像当前图像和绘图区域这样的东西。绘图函数是直接作用于当前axes(matplotlib中的专有名词,图形中组成部分,不是数学中的坐标系。)
来源:python中matplotlib.pyplot使用简介

Seaborn库是Python中另一个非常有用的数据可视化库,构建在Matplotlib之上,并提供许多高级数据可视化功能。

载入我们提供清洗之后的数据(clear_data.csv),大家也将原始数据载入(train.csv),说说他们有什么不同

# 读取原数据数集
train = pd.read_csv('train.csv')
train.shape
#(891, 12)
train.head()

#读取清洗过的数据集
data = pd.read_csv('clear_data.csv')
data.shape
#(891, 11)
data.head()

模型搭建

·处理完前面的数据我们就得到建模数据,下一步是选择合适模型
·在进行模型选择之前我们需要先知道数据集最终是进行监督学习还是无监督学习
·模型的选择一方面是通过我们的任务来决定的。
·除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定
·刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型

下面给出sklearn的算法选择路径,供大家参考

# sklearn模型算法选择路径图
Image('sklearn.png')
sklearn模型的学习:

sklearn是一个Python第三方提供的非常强力的机器学习库,它包含了从数据预处理到训练模型的各个方面。在实战使用scikit-learn中可以极大的节省我们编写代码的时间以及减少我们的代码量,使我们有更多的精力去分析数据分布,调整模型和修改超参。(sklearn为包名)
sklearn拥有可以用于监督和无监督学习的方法,一般来说监督学习使用的更多。sklearn中的大部分函数可以归为估计器(Estimator)和转化器(Transformer)两类。
参考:机器学习框架之sklearn简介


【思考】数据集哪些差异会导致模型在拟合数据时发生变化

【回答】
样本数量
是否是分类问题
数据是否有标记
是否数量预测
数据特征维度

任务一:切割训练集和测试集

这里使用留出法划分数据集

1、将数据集分为自变量和因变量
2、按比例切割训练集和测试集(一般测试集的比例有30%、25%、20%、15%和10%)
3、使用分层抽样
4、设置随机种子以便结果能复现

【思考】
划分数据集的方法有哪些?
为什么使用分层抽样,这样的好处有什么?
【回答】
1、留出法 是直接将数据集 D 划分为两个互斥的集合,其中一个集合作为训练集 S,另一个作为测试集 T
2、交叉验证法 k 折交叉验证:通常将数据集 D 分为 k 份,其中的 k-1 份作为训练集,剩余的那一份作为测试集,这样就可以获得 k 组训练/测试集,可以进行 k 次训练与测试,最终返回的是 k 个测试结果的均值。
3、自助法:我们每次从数据集D中取一个样本作为训练集中的元素,然后把该样本放回,重复该行为 m 次,这样我们就可以得到大小为m的训练集,在这里面有的样本重复出现,有的样本则没有出现过,我们把那些没有出现过的样本作为测试集。
用分层抽样的估计误差会较小,用起来也比较方便。

来源:数据集划分的三种常见方式!

任务提示1
1、切割数据集是为了后续能评估模型泛化能力
2、sklearn中切割数据集的方法为train_test_split
3、查看函数文档可以在jupyter noteboo里面使用train_test_split?后回车即可看到
4、分层和随机种子在参数里寻找
要从clear_data.csv和train.csv中提取train_test_split()所需的参数

from sklearn.model_selection import train_test_split
# 一般先取出X和y后再切割,有些情况会使用到未切割的,这时候X和y就可以用,x是清洗好的数据,y是我们要预测的存活数据'Survived'
X = data
y = train['Survived']
# 对数据集进行切割
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)
# 查看数据形状
X_train.shape, X_test.shape
#((668, 11), (223, 11))

【思考】
什么情况下切割数据集的时候不用进行随机选取
【回答】
可以不用随机选取的情况是数据集本身就足够随机,这种情况一般是随机处理后的。或者使用交叉验证法中的留一法处理数据。

任务二:模型创建

1、创建基于线性模型的分类模型(逻辑回归)
2、创建基于树的分类模型(决策树、随机森林)
3、分别使用这些模型进行训练,分别的到训练集和测试集的得分
4、查看模型的参数,并更改参数值,观察模型变化

任务提示2
1、逻辑回归不是回归模型而是分类模型,不要与LinearRegression混淆
2、随机森林其实是决策树集成为了降低决策树过拟合的情况
3、线性模型所在的模块为sklearn.linear_model
4、树模型所在的模块为sklearn.ensemble

from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# 默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)
# 查看训练集和测试集score值
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))

Training set score: 0.80
Testing set score: 0.79

# 调整参数后的逻辑回归模型
lr2 = LogisticRegression(C=100)
lr2.fit(X_train, y_train)
print("Training set score: {:.2f}".format(lr2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr2.score(X_test, y_test)))

Training set score: 0.79
Testing set score: 0.78

# 默认参数的随机森林分类模型
rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc.score(X_test, y_test)))

Training set score: 1.00
Testing set score: 0.83

# 调整参数后的随机森林分类模型
rfc2 = RandomForestClassifier(n_estimators=100, max_depth=5)
rfc2.fit(X_train, y_train)
print("Training set score: {:.2f}".format(rfc2.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc2.score(X_test, y_test)))

Training set score: 0.86
Testing set score: 0.81

【思考】
1、为什么线性模型可以进行分类任务,背后是怎么的数学关系
2、对于多分类问题,线性模型是怎么进行分类的
【回答】
1、如果函数值小于0,我们就预测类别-1,如果函数值大于0,我们就预测类别+1。对于所有用于分类的线性模型,这个预测规则都是通用的。对于用于分类的线性模型,决策边界是输入的线性函数。换句话说,(二元)线性分类器是利用直线、平面或超平面来分开两个类别的分类器。
2、多分类的问题常常是使用差分策略,通过二分类学习来解决多分类问题,即将多分类问题拆解为多个二分类训练二分类学习器最后通过继承得到结果,最经典拆分策略有三种:“一对一”(OvO)、“一对其余”(OvR)和“多对多”(MvM)。

任务三:输出模型预测结果

1、输出模型预测分类标签
2、输出不同分类标签的预测概率

任务提示3
一般监督模型在sklearn里面有个predict能输出预测标签,predict_proba则可以输出标签概率

# 预测标签
pred = lr.predict(X_train)
pred[:10]

array([0, 1, 1, 1, 0, 0, 1, 0, 1, 1])

# 预测标签概率
pred_proba = lr.predict_proba(X_train)
pred_proba[:10]

array([[0.60870022, 0.39129978],
[0.17725433, 0.82274567],
[0.40750365, 0.59249635],
[0.18925851, 0.81074149],
[0.87973912, 0.12026088],
[0.91374559, 0.08625441],
[0.13293198, 0.86706802],
[0.90560801, 0.09439199],
[0.05283987, 0.94716013],
[0.10936016, 0.89063984]])

【思考】
预测标签的概率对我们有什么帮助?
【回答】
预测标签的概率可以让我们对预测结果心中有数,判断其可信度的高低。

模型评估

根据之前的模型的建模,我们知道如何运用sklearn这个库来完成建模,以及我们知道了的数据集的划分等等操作。那么一个模型我们怎么知道它好不好用呢?以至于我们能不能放心的使用模型给我的结果呢?那么今天的学习的评估,就会很有帮助。

·模型评估是为了知道模型的泛化能力。
·交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
·在交叉验证中,数据被多次划分,并且需要训练多个模型。
·最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
·准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
·召回率(recall)度量的是正类样本中有多少被预测为正类
·f-分数是准确率与召回率的调和平均

任务一:交叉验证

·用10折交叉验证来评估之前的逻辑回归模型
·计算交叉验证精度的平均值
提示4
交叉验证在sklearn中的模块为sklearn.model_selection

from sklearn.model_selection import cross_val_score
lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)
# k折交叉验证分数
scores

array([0.85074627, 0.74626866, 0.74626866, 0.80597015, 0.88059701,
0.8358209 , 0.76119403, 0.8358209 , 0.74242424, 0.75757576])

# 平均交叉验证分数
print("Average cross-validation score: {:.2f}".format(scores.mean()))

Average cross-validation score: 0.80

【思考】k折越多的情况下会带来什么样的影响?
【回答】一般而言,k折越多,评估结果的稳定性和保真性越高,不过整个计算复杂度越高。一种特殊的情况是k=m,m为数据集样本个数,这种特例称为留一法,结果往往比较准确

任务二:混淆矩阵

·计算二分类问题的混淆矩阵
·计算精确率、召回率以及f-分数

【思考】什么是二分类问题的混淆矩阵,理解这个概念,知道它主要是运算到什么任务中的
【回答】
混淆矩阵是一个 2 维方阵,它主要用于评估二分类问题(例如:预测患或未患心脏病、股票涨或跌等这种只有两类情况的问题)的好坏。

作者:程序员在深圳
链接:https://www.imooc.com/article/286152
来源:慕课网
本文原创发布于慕课网 ,转载请注明出处,谢谢合作
参考:二分类评估,从混淆矩阵说起

提示5
·混淆矩阵的方法在sklearn中的sklearn.metrics模块
·混淆矩阵需要输入真实标签和预测标签
·精确率、召回率以及f-分数可使用classification_report模块

from sklearn.metrics import confusion_matrix
# 训练模型
lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)
# 模型预测结果
pred = lr.predict(X_train)
# 混淆矩阵
confusion_matrix(y_train, pred)

array([[354, 58],
[ 83, 173]])

from sklearn.metrics import classification_report
# 精确率、召回率以及f1-score
print(classification_report(y_train, pred))
             precision   recall  f1-score   support

       0       0.81      0.86      0.83       412
       1       0.75      0.68      0.71       256

accuracy                            0.79       668
macro avg       0.78      0.77      0.77       668
weighted avg    0.79      0.79      0.79       668

【思考】
如果自己实现混淆矩阵的时候该注意什么问题?
【回答】
理清楚混淆矩阵中各种概念,在绘制理解图时注意不要混淆。

任务三:ROC曲线

·绘制ROC曲线
【思考】
什么是OCR曲线,OCR曲线的存在是为了解决什么问题?
【回答】
受试者工作特征曲线 (receiver operating characteristic curve,简称ROC曲线),又称为感受性曲线(sensitivity curve)。得此名的原因在于曲线上各点反映着相同的感受性,它们都是对同一信号刺激的反应,只不过是在几种不同的判定标准下所得的结果而已。
ROC曲线描述的其实是分类器性能随着分类器阈值的变化而变化的过程。对于ROC曲线,一个重要的特征是它的面积,面积为0.5为随机分类,识别能力为0,面积越接近于1识别能力越强,面积等于1为完全识别。
来源:ROC曲线简介

提示6
·ROC曲线在sklearn中的模块为sklearn.metrics
·ROC曲线下面所包围的面积越大越好

from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# 找到最接近于0的阈值
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)

<matplotlib.legend.Legend at 0x1a1c4b9b38>

【思考】
对于多分类问题如何绘制ROC曲线?
【回答】
多分类的ROC曲线的画法其实就是画出各个类别的ROC曲线,然后进行平均。

总结

这次动手学数据分析的学习到这基本上就结束了,在学习过程中,按照课程一步一步的学习,从易到难,个人认为最后最重要的部分就是模型的搭建那一部分,在学习中还是有一些不理解的地方,通过各个平台来学习,初步了解并实践了基本的数据分析过程,希望对未来的学习有所帮助。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值