题目链接:https://codeforces.com/problemset/problem/400/D
题意:给出 n 个细菌,m 种仪器,细菌有 k 种,每种细菌数量 c[i],给出从第 ui 细菌到第 vi 个细菌转化需要的花费。判断同种细菌之间的转化是不是花费都可以是0,如果可以再输出不同种细菌之间转化的最小花费。
思路:用并查集,如果在两种细菌之间转化花费为0,那么我们就用并查集将它们连接起来,然后再检查同种细菌之间转化是不是可以为0,直接用并查集判断是不是在同一集合就好,最后再求不同细菌之间转化的最小花费,因为要想不同细菌之间转化最少,那么必然是第 i 种细菌中的第 u 个细菌和第 j 种细菌中第 v 个细菌直接相连,由于数据较小,可以用Floyd,来求解。
代码:
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <queue>
#include <algorithm>
#include <vector>
#define maxn 100005
#define INF 0x3f3f3f3f
using namespace std;
int p[maxn];
int n,m;
int Find(int x)
{
return x == p[x] ? x : p[x] = Find(p[x]);
}
int c[maxn];
int dp[510][510];
int main()
{
int K;
scanf("%d %d %d", &n, &m, &K);
for(int i = 1; i <= n; ++i)
p[i] = i;
memset(dp, INF, sizeof dp);
for(int i = 1; i <= K; ++i)
{
scanf("%d", c+i);
c[i] += c[i-1];
dp[i][i] = 0;
}
for(int i = 0; i < m; ++i)
{
int u, v, val;
scanf("%d %d %d", &u, &v, &val);
if(val == 0)
{
int x = Find(u);
int y = Find(v);
if(x != y)
p[y] = x;
}
int pos1 = lower_bound(c+1, c+1+K, u) - c;
int pos2 = lower_bound(c+1, c+1+K, v) - c;
dp[pos1][pos2] = dp[pos2][pos1] = min(dp[pos1][pos2], val);
}
bool ok = true;
int cnt = 1;
int x = Find(1);
for(int i = 2; i <= n && ok; ++i)
{
if(i <= c[cnt])
{
int y = Find(i);
if(x != y)
ok = false;
}
else
{
x = Find(c[++cnt]);
int y = Find(i);
if(x != y)
ok = false;
}
}
if(!ok)
{
puts("No");
return 0;
}
for(int k = 1; k <= K; ++k)
for(int i = 1; i <= K; ++i)
for(int j = 1; j <= K; ++j)
if(dp[i][k] != INF && dp[k][j] != INF)
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j]);
puts("Yes");
for(int i = 1; i <= K; ++i)
for(int j = 1; j <= K; ++j)
if(j == K)
printf("%d\n", dp[i][j] == INF ? -1 : dp[i][j]);
else
printf("%d ", dp[i][j] == INF ? -1 : dp[i][j]);
return 0;
}