Bob的哥哥住在法国。在法国有n个城市,有n-1条双向道路连通这些城市。这些城市从1~n编号。你能沿着这些道路从一个城市走到任意一个城市。
Bob的哥哥供职于“两条路”公司,并且刚好拿到了去修缮法国的任意两条路径的项目。一条路径指的是连通两个不同的城市的道路序列。公司能自主选择要修缮的道路,唯一的条件是这两条路径不能交叉(即不能有共同的城市)。
当然,我们都知道存在利润,“两条路”公司得到的利润将等于两条路径的长度的乘积。假设每条道路的长度等于1,并且路径的长度等于道路的数量。请你为这公司获得最大的利润。
收起
输入
单组测试数据。 第一行是一个整数 n (2≤n≤200) ,n是这个国家的城市的数量。 接下来n-1行是道路的信息,每一行是两个整数ai,bi,它们是城市的编号,表示ai和bi之间有一条道路直接连通。(1≤ai,bi≤n)。
输出
输出最大的利润。
思路:由于这个题目的数据范围是200,比较小的,所以我们直接暴力枚举每一条边,然后断开他然后判断树的直径,最后连接上就行了
代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<queue>
using namespace std;
const int maxn=200+10;
int G[maxn][maxn],vis[maxn];
int a[maxn],b[maxn];
int dist[maxn];
int index,maxx;
int n;
void BFS(int s)
{
memset(vis,0,sizeof(vis));
dist[s]=0;
vis[s]=1;
queue<int >Q;
Q.push(s);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=1;i<=n;i++)
{
if(!G[u][i]) continue;
if(vis[i]) continue;
vis[i]=1;
dist[i]=dist[u]+1;
Q.push(i);
if(maxx<dist[i])
{
maxx=dist[i];
index=i;
}
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d",&a[i],&b[i]);
G[a[i]][b[i]]=1;
G[b[i]][a[i]]=1;
}
int ans=0;
for(int i=1;i<n;i++)
{
memset(dist,0,sizeof(dist));
G[a[i]][b[i]]=0;
G[b[i]][a[i]]=0;
maxx=0,index=0;
BFS(a[i]);
BFS(index);
int temp=maxx;
memset(dist,0,sizeof(dist));
maxx=0,index=0;
BFS(b[i]);
BFS(index);
ans=max(ans,maxx*temp);
G[a[i]][b[i]]=1;
G[b[i]][a[i]]=1;
}
printf("%d\n",ans);
}