人脸关键点landmark PFLD: A Practical Facial Landmark Detector

开源代码

pytorch & onnx:https://github.com/polarisZhao/PFLD-pytorch

论文核心思想:

  1. 仿照densenet结构,采用mobilenet-v2作为主干网络,最后输出预测的fc层的输入为主干网络不同层次的特征(应该是整个工作work的最关键点)
  2. 姿态,大表情,模糊等人脸对于关键点的预测是一种挑战,除了通过增加这些种类的数据,论文提出了一个动态平衡loss的方法,提升对于“预测难例”的学习。具体,通过人脸姿态的实现,根据一般性应该人脸姿态越大预测难度也越大,因此加大了这部分数据loss的权重 
  3. 增加一个姿态的辅助训练网络

结论

一些想法

通过fc层连接各不同层次的特征应该是整个工作work的最关键点)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值