滴滴出行2020数据分析面试题

这是一篇关于滴滴出行2020年数据分析面试的博客,内容包括了五个核心问题:订单应答率、完单率计算,呼叫应答时间分析,呼叫量最高峰和最低谷的小时,以及乘客分类的因素。解题过程涉及数据预处理,时间格式转换,以及RFM模型的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

题目

问题

1.订单的应答率、完单率分别是多少?

2.呼叫应答时间多长?

3.从这一周的数据来看,呼叫量最高的是哪一个小时(当地时间)?呼叫量最少的是哪一个小时(当地时间)?

4.呼叫订单第二天继续呼叫的比例有多少?

5.如果要对表中乘客进行分类,你认为需要参考哪一些因素?

 

解题过程

导入mysql数据库及数据预处理

观察表中时间相关数据结合题目,要做出2步数据预处理

【1】将时间相关列转换格式

【2】按巴西比中国慢11小时,将表中北京时间转换为巴西时间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值