使用FP-growth算法发现频繁项集

本文介绍如何使用FP-growth算法来挖掘数据中的频繁项集,通过提供的源码详细展示了算法的执行过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源码如下:


#coding=utf-8


'''
Created on Jun 14, 2011
FP-Growth FP means frequent pattern
the FP-Growth algorithm needs: 
1. FP-tree (class treeNode)
2. header table (use dict)

This finds frequent itemsets similar to apriori but does not 
find association rules.  

@author: Peter

使用FP-growth算法发现频繁项集

FP-growth只会扫描数据集两次,它发现频繁项集的基本过程如下:
    (1)构建FP树
    (2)从FP树中挖掘频繁项集

                            FP-growth算法
优点:一般要快于Apriorio
缺点:实现比较困难,在某些数据集上性能会下降。
适用数据类型:标称型数据。


    FP-growth算法将数据存储在一种称为FP树的紧凑数据结构中。FP代表频繁模式(Frequent
Pattern )。一棵FP树看上去与计算机科学中的其他树结构类似,但是它通过链接(link)来连接相
似元素,被连起来的元素项可以看成一个链表。


    同搜索树不同的是,一个元素项可以在一棵FP树中出现多次。FP树会存储项集的出现频率,
而每个项集会以路径的方式存储在树中。存在相似元素的集合会共享树的一部分。只有当集合之
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值