AVL树的实现

AVL树是一棵平衡二叉搜索树

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下

一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度,平衡二叉搜索树就诞生了。

在这里,主要实现他的调节功能。

首先在每一个节点了都需要一个平衡因子bf,通过平衡因子判断是否平衡。

template<class T, class V >
struct AVLTreeNode
{
	AVLTreeNode<T,V>* _parent; // 指向其父节点
	AVLTreeNode<T,V>* _left;
	AVLTreeNode<T,V>* _right;
	T _key;
	V _value;
	int bf;   //  平衡因子
	AVLTreeNode(const T& key = T(), const V& value = V())
		:_parent(nullptr)
		,_left(nullptr)
		,_right(nullptr)
		,_key(key)
		,_value(value)
		,bf(0)
	{}
};

bf为右子树的高度减左子树的高度,也就是说,平衡搜索二叉树要保持每一个节点里的bf都小于2,大于-2。

在之前,已经实现了通过插入就可以保持一颗搜索树。

插入代码(未调节)

template<class T, class V >
class AVLTree
{
	typedef AVLTreeNode<T, V> AVLTreeNode;
public:
	AVLTree()
		:_node(nullptr)
	{ }
	bool Insert(const T& key = T(), const V& value = V())
	{
		if (_node == nullptr)
		{
			_node = new AVLTreeNode(key,value);
			return true;
		}

		AVLTreeNode* cur = _node;
	    AVLTreeNode* parent = nullptr;  
		while (cur != nullptr)
		{
			if (cur->_key == key)
			{
				return false; 
			}
			if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				parent = cur;
				cur = cur->_right;
			}
		}

		if (key < parent->_key)
		{
			parent->_left = new AVLTreeNode(key, value);
			parent->_left->_parent = parent;
		}
		else
		{
			parent->_right = new AVLTreeNode(key, value);
			parent->_right->_parent = parent;
		}

接下来就是对平衡因子的判断的对树的调节,因为当我们插入一个节点,其祖先节点可能都会发生改变。

可以看出,当插入一个节点时,其祖先节点可能受影响,其他节点不受影响。

只需要向上调节并排查祖先的平衡因子。当某个祖先的平衡因子bf==0的时候结束。

如何调节祖先的平衡因子与为什么bf==0就结束呢?

蓝色方框表示将要插入的节点

这里的bf指2的bf。

图一,bf==1,左插入后,bf==0。

图二,bf==-1,右插入后,bf=0。

图三,bf==0,右插入后,bf=1。

图四,bf==0,左插入后,bf=-1。

可以发现,左插入,bf--,右插入,bf++

当插入后bf==0,其所有祖先的高度并没有被影响。

当插入后bf==1/-1,就要去向上判断祖先是否被影响,图三,图四(2的父节点)的bf均改变,变为了1,图五2的父节点的bf变为2,需要调节了。

写一下向上的代码

		while (parent)
		{
			if (parent->_key > key) // 通过key判断改变的是parent的左边还是右边
			{
				parent->bf--;
			}
			else
			{
				parent->bf++;
			}


			if (parent->bf == 0)      //  原来是1或-1,说明并没有改变高度
			{
				break;
			}
			else if (parent->bf == 1 || parent->bf == -1)     //  原来是为0 ,其所有的祖先都可能被影响了
			{                                //   往上走,判断其祖先
				cur = parent;
				parent = parent->_parent;
			}


			//   开始旋转
			else if((parent->bf == 2 || parent->bf == -2))
         }

看看是如何旋转的

将bf==2/-2的节点定义为parent,上调之前的parent定义为cur(cur->_parent==parent)

左旋转:将cur->left给parent->right(原来cur是parent->right),parent变为cur->left。

右旋转:将cur->right给parent->left(原来cur是parent->left),parent变为cur->right。

注意,这里也很复杂,需要考虑他们的_parent节点的连接和parent是否是头节点。

接下来具体讲一讲他们的分类

bf==1/-1继续往上走,看父节点的bf变化。

旋转一经过左旋转后就可以break了

旋转二就要复杂一点,看看旋转二的分析

可以看到在parent->bf==2,cur->bf==-1,需要双旋的,需要将左右旋结合。

左单旋

    //左单旋
	void RotateL(AVLTreeNode* parent)
	{
		if (parent == nullptr || parent->_right == nullptr)
			return;


		AVLTreeNode* subr = parent->_right;
		AVLTreeNode* subrL = subr->_left;    //记录,保证对cur->bf的正确修改
		parent->_right = subr->_left;



		if (subr->_left)
		{
			subr->_left->_parent = parent;
		}


		subr->_left = parent;
		AVLTreeNode* ppnode = parent->_parent;
		parent->_parent = subr;


		//对subr进行处理
		if (ppnode == nullptr)    //  parent是头节点
		{
			subr->_parent = nullptr;
			_node = subr;
		}
		else
		{
			subr->_parent = ppnode;
			if (ppnode->_left == parent)
			{
				ppnode->_left = subr;
			}
			else
			{
				ppnode->_right = subr;
			}
		}
        

        //  进行bf的修改
		if (parent->bf == 2)
		{
			if (subr->bf == 1)
			{
				parent->bf = subr->bf = 0;
			}
			if (subr->bf == -1)
			{
				if (subrL->bf == 0)
				{
					parent->bf = subrL->bf = subr->bf = 0;
				}
				if (subr->bf == -1)
				{
					parent->bf = subrL->bf = 0;
					subr->bf = 1;
				}
			}

		}
	}

右单旋

	void RotateR(AVLTreeNode* parent)
	{
		if (parent == nullptr)
		{
			return;
		}


		AVLTreeNode* subl = parent->_left;
		AVLTreeNode* sublR = subl->_right;
		parent->_left = subl->_right;


		if (subl->_right)  //  为空就不用去管他的_parent
		{
			subl->_right->_parent = parent;
		}



		subl->_right = parent;
		AVLTreeNode* ppnode = parent->_parent;
		parent->_parent = subl;



		if (ppnode == nullptr)
		{
			subl->_parent = nullptr;
		}
		else
		{
			subl->_parent = ppnode;
			if (ppnode->_left == parent)
			{
				ppnode->_left = subl;
			}
			else
			{
				ppnode->_right = subl;
			}
		}

		if (parent->bf == -2)
		{
			if (subl->bf == -1)
			{
				subl->bf = parent->bf = 0;
			}
			if (subl->bf == 1)
			{
				if (sublR->bf == 0)
				{
					parent->bf = sublR->bf = subl->bf = 0;
				}
				if (sublR->bf == 1)
				{
					parent->bf = sublR->bf = 0;
					subl->bf = -1;
				}
			}
		}
  	}

旋转代码

			//   开始旋转
			else if((parent->bf == 2 || parent->bf == -2))
			{
				if (parent->bf == 2)
				{
					if (cur->bf == 1)
					{
						RotateL(parent);
					}
					if (cur->bf == -1)
					{
						RotateR(cur);    //  不会给平衡因子,因为cur->parent!=-2
						RotateL(parent);
					}
				}
				if (parent->bf == -2)
				{
					if (cur->bf == -1)
					{
						RotateR(parent);
					}
					if (cur->bf == 1)
					{
						RotateL(cur);      //  不会给平衡因子,因为cur->parent!=-2
						RotateR(parent);
					}
				}
				break;    //   旋转了就保证了当前的树是平衡树,其祖先不需要判断了
			}

对代码进行测试

	void _InOrder(AVLTreeNode* root)
	{
		if (root == nullptr)
		{
			return;
		}

		_InOrder(root->_left);
		cout << root->_key << " " << root->_value << endl;
		_InOrder(root->_right);
	}

	void InOrder()
	{
		_InOrder(_node);
	}
	bool _IsbalanceTree(AVLTreeNode* root, int& high)
	{
		if (root == nullptr)
		{
			high = 0;
			return true;
		}
			int left_high = 0;
			if (_IsbalanceTree(root->_left, left_high) == false)
			{
				return false;
			}
			int right_high = 0;
			if (_IsbalanceTree(root->_right, right_high) == false)
			{
				return false;
			}
			if (left_high - right_high > 1 || left_high - right_high < -1)
			{
				return false;
			}
		high = 1 + (left_high > right_high ? left_high : right_high);
		return true;       //   满足左子树为平衡二叉树   右子树为平衡二叉树  该树为平衡二叉树
	}
	//判断平衡
	bool IsbalanceTree()
	{
		int k = 0;
		return _IsbalanceTree(_node, k);
	}
void test4()
{
	AVLTree<string, int> avl;
	avl.Insert("a", 1);
	avl.Insert("b", 2);
	avl.Insert("c", 3);
	avl.Insert("d", 4);
	avl.Insert("e", 5);
	avl.Insert("f", 6);
	avl.Insert("g", 7);
	avl.Insert("h", 8);
	avl.Insert("i", 9);
	avl.Insert("j", 10);
	//判断是否是平衡二叉搜索树
	// 搜索树
	avl.InOrder();

	// 平衡树
	if (avl.IsbalanceTree())
	{
		cout << "是平衡树" << endl;
	}
}


结果:
a 1
b 2
c 3
d 4
e 5
f 6
g 7
h 8
i 9
j 10
是平衡树

其实在耦合这块的话并不是很好,将左右旋和右左旋单独实现并修改平衡因子能够实现高内聚,低耦合。

希望能够彻底帮助你理解AVL树的旋转,而不是仅依靠一张结论图搬公式!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值