[agc003f]Fraction of Fractal

版权声明:本文是蒟蒻写出来的,神犇转载也要说一声哦! https://blog.csdn.net/WerKeyTom_FTD/article/details/78361805

做法

注意到上下左右都联通答案是1,都不连通答案是黑格数的次幂。
判掉后发现只有一边联通很好做,矩阵乘法上就行了。

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int mo=1000000007;
char s[1050][1050];
int sta[80];
int a[2][2],ans[2][2],dis[2][2],o[2][2];
int i,j,l,t,n,m,top,cnt,t1,t2,p1,p2,num;
ll k;
char get(){
    char ch=getchar();
    while (ch!='.'&&ch!='#') ch=getchar();
    return ch;
}
int qsm(int x,ll y){
    if (!y) return 1;
    int t=qsm(x,y/2);
    t=(ll)t*t%mo;
    if (y%2) t=(ll)t*x%mo;
    return t;
}
void mult(int a[2][2],int b[2][2],int c[2][2]){
    int i,j,k;
    fo(i,0,1)
        fo(j,0,1)
            o[i][j]=0;
    fo(k,0,1)
        fo(i,0,1)
            fo(j,0,1)
                o[i][j]=(o[i][j]+(ll)a[i][k]*b[k][j]%mo)%mo;
    fo(i,0,1)
        fo(j,0,1)
            c[i][j]=o[i][j];
}
int main(){
    scanf("%d%d%lld",&n,&m,&k);
    fo(i,1,n)
        fo(j,1,m){
            s[i][j]=get();
            if (s[i][j]=='#'){
                cnt++;
                if (j>1&&s[i][j-1]=='#') t1++;
                if (i>1&&s[i-1][j]=='#') t2++;
            }
        }
    fo(i,1,n)
        if (s[i][1]=='#'&&s[i][m]=='#') p1++;
    fo(i,1,m)
        if (s[1][i]=='#'&&s[n][i]=='#') p2++;
    if (p1<p2){
        swap(p1,p2);
        swap(t1,t2);
    }
    if (k==1||p2){
        printf("1\n");
        return 0;
    }
    if (!p1&&!p2){
        printf("%d\n",qsm(cnt,k-1));
        return 0;
    }
    if (k==2){
        printf("%d\n",cnt-t1);
        return 0;
    }
    fo(i,0,1) ans[i][i]=1;
    a[0][0]=cnt-t1;a[0][1]=-p1;
    dis[0][0]=cnt;dis[1][0]=t1;dis[1][1]=p1;
    k-=2;
    while (k){
        sta[++top]=k%2;
        k/=2;
    }
    while (top){
        mult(ans,ans,ans);
        if (sta[top]) mult(ans,dis,ans);
        top--;
    }
    mult(a,ans,a);
    num=a[0][0];
    (num+=mo)%=mo;
    printf("%d\n",num);
}
阅读更多 登录后自动展开
想对作者说点什么? 我来说一句
相关热词

没有更多推荐了,返回首页